Restructure of org.aspectj Eclipse Project
History
Matthew Webster, initial draft 7/18. See also bug todo and email thread todo.
Wes Isberg, July 20.
Drivers

New features

1. Make it easier for Eclipse/OSGi based projects to consume AspectJ (see https://bugs.eclipse.org/bugs/show_bug.cgi?id=113948.

2. Improve dependency management. The batch build process is stricter about inter-module dependencies than Eclipse. This inconveniences developers by requiring an Ant build before checking in to avoid breaking the build.

3. Manage test CLASSPATH better to run more tests more easily. Certain compiler (LTW?) tests have an implicit dependency on Java 5 projects which must be satisfied by the harness. Conversely, tests that could execute under JDK 1.3 or 1.4 are only run with JDK 1.5 because they are segregated in a Java 5 test suite.
Existing features

4. Support a single, Eclipse-driven specification for module dependencies and product assembly to minimize work needed to maintain or debug the build.

5. Support optional Java 5 source

6. Remove crufty code.

Benefits
The main advantages sought from this approach are:

1. The project looks like what we ship and so AJDT can consume AspectJ directly from head (so can the Aspects Equinox Incubator and any other Eclipse/OSGi-based project).

2. Better management of dependencies on (a) environments like Java 5; (b) optional libraries like XML and JRockit; and (c) specific versions of AspectJ (by AJDT).
3. Fewer build breaks because we actually build and test with the Execution Environment that we claim to support i.e. no accidental JDK 1.4 APIs!

Proposals
Eclipse 3.2 has two new features that could drive the build: better support for OSGI manifests and execution environments. Still, it will be possible for AspectJ developers to not use Eclipse and even to edit the dependencies directly.

Convert AspectJ Java projects to OSGI bundle projects

1. AJDT and other source consumers would use AspectJ directly in the source/module form. Currently AJDT must repackage the binaries and associate source with them, making it harder to work on problems spanning AspectJ and AJDT. This would allow commit/patch from a single workspace and easier source level debugging between AJDT and AspectJ. Also a simple runtime workbench can be used for tricky issues such as incremental compilation.

2. All dependencies would be expressed in OSGi bundle manifest files, which specify a classpath (for library jars) and "required" bundles. Libraries expected or hoped for in the deployment environment (e.g., XML or JRocket) must be included for build and test purposes but excluded from the shipping product. These might be specified as "optional" required-bundles or as required-packages. (See issues, below.)
3. Initial binary assembly would work through the usual bundle assembly, with the bundle output including binaries from bundle fragments it requires (but not from optional bundles). (See issues, below.)
Consolidate AspectJ Java projects

4. The current AspectJ modules would be combined down to as few as six modules (runtime, runtime, weaver, compiler, and tools (plus Java 5 variants for runtime and weaver)). This makes reduces the requirement for automating dependency management. Could manage package-level dependencies with static analysis, eclipse exports, or JDepends. Currently these build in 15 seconds under Ant (vs. 1:20). (Optional)

Runtimes for testing, using Eclipse 3.2 execution environments
5. Improved support for running individual compiler tests especially LTW testing. Currently the CLASSPATH is wrong when tests are run from “tests” as opposed to “run-all-junit-tests” because of missing Java 5 projects e.g. weaver5. The use of “Require-Bundle” and bundle fragments removes this problem. (See issues, below.)

6. Ant and Eclipse are poorly coordinated wrt expected VM/libraries, with Ant being more strict. Eclipse 3.2 execution environments provide an abstraction that might help with both compiling code and running tests.
Issues

1. Staging, compatibility, and migration generally: There are many clients of the build process and products. We should not annoy the happy ones to soothe the unhappy. We should validate the new process before leaving the old one behind, to avoid getting into a stopped state. The work should be staged to get low-hanging fruit first. Any product-user-visible changes should be limited to a single release.
2. Semantics: it's not clear yet that manifest logic can capture what we actually do when compiling, testing, and delivering product
. Right now most smarts are hacked in to the Ant builder task and its associated properties - not pretty or easy to replicate. Further, a lot of the neat things we get from OSGI - optional loading of bundles, etc. - are not obvious in an Ant build, and the semantics have to work in Ant.
3. Command-line and AJDT clients expect different things, e.g., lib/aspectjtools.jar and org.aspectj.compiler_1.5.3. Currently AJDT adapts to the command-line, but now it will be the other way around. Not sure this is easy. Since users write their own scripts, we can't change the names. Also need to consider Maven, which prefers versioned jars.
4. Benefits: It seems possible to use a custom builder or an Ant builder to produce OSGI bundles from the current AspectJ modules rather than redoing the AspectJ modules themselves (essentially replacing the current eclipse.plugins adapter project/module). This would avoid messing with the AspectJ build. Other than benefiting AJDT does the use of OSGi bundles help the AspectJ project in other ways? Does it make things more difficult (apart from the obvious impact on build)? Does it give us new opportunities?
5. Ditch the old approach?: Eclipse PDE can generate an Ant build script for a plugin project, including a bundle. Why not just generate the scripts rather than adapting the current Ant builder? The scripts could be checked in for those without Eclipse and to avoid a bootstrap during the batch build process. Similarly, if we reduce the number of modules and work within a simple world of only modules (.java) or libraries (.jar), then there's little work in maintaining the build.
6. Testing: it's not clear this makes setting up test classpaths or LTW any easier
.
7. PDE: it's not clear the PDE is as robust or usable as the JDT
. (e.g., I can't seem to export.)

Engineering

Migration

Product client migration

There should be no visible change for product clients

Source client migration

Source clients get new instructions to simply check out the associated plugin projects.

AspectJ developer migration

Same as source client, except might lose support for testing JUnit outside Eclipse.
Build process migration

It is essential that while the proposed plug-in projects are developed that the existing batch build process continue to deliver an AspectJ install. We therefore need a migration plan to allow the feasibility of a plug-in based project structure to be determined while allowing developers to synchronize the existing structure.
Phase 1 (Completed)
Goals

· Determine feasibility of Eclipse plug-in projects

· AJDT (org.eclipse.ajdt) can use AspectJ (org.aspectj) from HEAD
· org.aspectj.all.tests/RunTheseBeforeYouCommitTests passes (using JSE-1.5)
· org.eclipse.ajdt.tests/AllCoreTests passes
· Continue to synchronize from HEAD using old projects
· Catch undesired dependencies in development e.g. accidental 1.4/1.5 API usage
· Consistent CLASSPATH i.e. Java 5 dependencies available when running under JDK 1.5 without explicit dependency on Java 5 projects or “magic” in the harness

Tasks

· Create new plug-in projects using bundle manifest.mf instead of .classpath to determine inter-module dependencies and versioning

· Give projects unique names that are the same as deliverable e.g. org.aspectj.runtime so that they can share a workspace with AJDT, OSGi, AOSGi, Spring, …

· Change module composition and dependencies to be the same as deliverable

· Put JUnit testcases in separate e.g. org.aspectj.weaver.tests

· Put projects that comprise a single module together using separate source folders e.g. org.aspectj.weaver contains asm, bridged, loadtime, util and weaver

· Group and name projects according to purpose: build, test, product e.g. org.aspectj.build.xerces

· Create linked source folders from new projects to old ones e.g. org.aspectj.runtime/runtime_src > runtime/src

· Remove org.eclipse packages from jdtcore-for-aspectj.jar because AJDT will need the latest i.e. 3.2 versions. This work is incomplete because the standalone version needs these dependencies. Should create another bundle org.aspectj.eclipse.

· Create simplified dependency chain ajde > core > weaver > runtime with plug-ins re-exporting packages

· Use fragments for Java 5 dependent features e.g. org.aspectj.runtime5

· Use optional imports for optional dependencies e.g. BEA JRockit

· Use Eclipse 3.2 Execution Environment instead of JRE so that each project is built with the lowest supported level e.g. CDC 1.0 for org.aspectj.runtime

Issues

· AJDT requires aspectjrt.jar to create ASPECTJ_LIB (https://bugs.eclipse.org/bugs/show_bug.cgi?id=149580). The workaround is to use the binary installed org.aspectj.runtime bundle for running tests and runtime workbenches.

· AspectJ 1.5.2 Final is looking for aspectjrt.jar on the classpath even for plug-in dependencies in Eclipse (https://bugs.eclipse.org/bugs/show_bug.cgi?id=112098) which means you can’t build AJDT with the new structure. The workaround is to install an older DEVLOPMENT version of AJDT.

· The org.aspectj.tests project is built with JSE-1.3 but you cannot run individual LTW tests because of the classpath in AjcTestCase (https://bugs.eclipse.org/bugs/show_bug.cgi?id=117885). The workaround is to use JSE-1.5 which includes XML support. This is not a regression because you cannot do this in the existing tests project.

Phase 2 (Definition incomplete)

Goals

· org.aspectj.all.tests/RunTheseBeforeYouCommitTests passes (using JSE-1.3)
Tasks

· Separate JSE-1.3 and 1.5 compiler JUnit testcases while maintain the same XML specification and tests

Dependencies

Project dependencies (.classpath) are replaced by bundle dependencies (META-INF/manifest.mf). In addition a bundle must be explicit about which packages other bundles can see i.e. its interface must be explicitly exported. There are 3 basic types of dependency:

1. Require-Bundle:
Used when a bundle has a hard dependency on another specific bundle implementation e.g. weaver and runtime or weaver.tests and weaver. This is equivalent to a Java Project dependency.

2. Import-Package:
Used when a dependency is provided by a different bundle during development than when it is deployed e.g. XML. The dependency can be optional as in the case of JRockit. This is equivalent to a library dependency that is skipped using Builder.properties.

3. Bundle-Host:

Used for JRE-specific features. The fragment is logically part of the host bundle but is only loaded if its requirements are met. This allows weaver.tests to have a hard dependency on weaver but only when run with Java 5 is the weaver5 bundle loaded.

Simplification
Another combined approach could be to simplify to the point where very little was done outside Eclipse, and that done (at least initially) explicitly in Ant.

Table: matching old semantics with new mechanisms
	Old build
	OSGI build
	Evaluation

	.classpath src folders
	.classpath src folders
	same

	
	.classpath linked src folders
	prohibited

	.classpath testsrc
	Separate *.test module
	More explicit dependencies; need to import source module exports (unsupported)

	java5-src
	Separate *5 module?
	More explicit VM dependency.
No confusion from mixed-source modules, no mistakes from including Java 5 API in src.

But packages spread across source folders

	java5-testsrc
	Separate tests5 module
	same as testsrc and java5-src

	.classpath src /modules
	Required-Bundle
	easy for required ones

	libraries
	classpath
	ok for explicit dependencies on lib/ jars, but have to assemble?

	libraries
	Import-package
	unsupported, hard

	libraries
	plugins
 (optional)
	Might be helpful for ASM/BCEL variants

Table: Dependency traffic analysis
	Old organization
	new way
	Evaluation

	{java5-}{test}src
	new modules; segregated
	relatively easy to support, lose rules

	Libraries: xml-apis.jar, ant.jar, junit.jar, commons.jar, jrocket.jar, jakarta-regexp.jar
	classpath

	Easy as current, but still require skip.libraries pruning (although NONE of these are included, so can say to exclude any library and include any plugin?)

	Source libraries: jdtcore-for-aspectj.jar, bcel.jar, asm.jar
	bundles or plugins?

	Easier source integration? But very low traffic and perhaps memory and time intensive. Would be nice to manage dependencies.

	libraries: bcel.jar, asm.jar
	bundles or plugins?
	Easier source integration?

	modules: runtime ajbrowser(ajde taskdefs compiler (loadtime5 (loadtime (weaver5 (weaver (asm (bridge (util)))))))
	runtime tools (compiler (weaver))
	Why worry about explicit dependencies with so few modules?

Simplified build rules

With simplified rules and fewer modules, the benefits of automatic dependency tracking aren't so important. The new rules would be:
1. There are only four min-VM modules: tools (ajde
, ajbrowser, taskdefs), compiler, runtime, weaver (weaver, asm, util, bridge, loadtime).

2. .jar libraries not incorporated into the project (e.g. ant.jar, xml-apis.jar) are on the plugin classpath
3. Libraries incorporated into the product (e.g., bcel.jar) are themselves versioned plugins.

4. Tests and Java-5 specific code go into their own plugins.

5. Command-line product assembly is managed entirely from Ant scripts - no special builders. If there is a new module or new libraries, the Ant scripts need to be updated. (Obviously, if PDE or an Ant classpath task is written, great.)

6. Batch builds use the Eclipse headless build, and run JUnit tests just like they are from Eclipse. There may be no other supported way to run JUnit tests, which means we expect developers to use Eclipse.

Appendix

Background

The first Eclipse release of AspectJ 1.1.0 had two installed modules (runtime and tools) and supported a single platform JDK 1.3. The compiler and woven applications would execute on JDK 1.4 but exploited no features of that platform and we made no guarantees about J2ME. The AJDT tools were immature. The latest release of AspectJ 1.5.2 has four installed modules (five if you include AJDE) and exploits four (soon to be five) platforms from a single install: Java ME, Java SE 1.3, 1.4, 1.5. More importantly the project supports three distinct environments: development (Eclipse/AJDT), build (Ant) and runtime (LTW). Furthermore the project is attracting an increasingly important and diverse set of consumers besides AJDT including AOSGi, Spring and Maven; many of whom are Eclipse/OSGi based.

This document reviews the way the project is developed, tested and delivered.

OSGi

Documentation on OSGi can be downloaded from http://osgi.org/. However a deep understanding of the specification is unnecessary given the simplicity of bundle manifests and the excellent support in Eclipse PDE. Here is the manifest for org.aspectj.runtime:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: AspectJ Runtime

Bundle-SymbolicName: org.aspectj.runtime

Bundle-Version: 1.5.2

Bundle-Localization: plugin

Export-Package: org.aspectj.lang,

 org.aspectj.lang.reflect,

 org.aspectj.runtime,

 org.aspectj.runtime.internal,

 org.aspectj.runtime.internal.cflowstack,

 org.aspectj.runtime.reflect

Eclipse-ExtensibleAPI: true

Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0

Bundles (Provisional List)

	New
	Old
	Comment

	org.aspectj.ajde
	ajde
	

	org.aspectj.ajde.tests
	
	

	org.aspectj.all.tests
	run-all-unit-tests
	

	org.aspectj.ant
	taskdefs
	

	org.aspectj.ant.tests
	
	

	org.aspectj.build
	build
	

	org.aspectj.build.apache
	lib/commons
	could be build.commons

	org.aspectj.build.bea
	lib/ext/jrockit
	

	org.aspectj.build.tests
	
	

	org.aspectj.build.xerces
	lib/ant/lib/xml-apis.jar; lib/ant/lib/xercesImpl.jar.jar
	could be build.xml

	org.aspectj.core
	org.aspectj.ajdt.core;org.eclipse.jdt.core
	org.aspectj.compiler has been suggested

	org.aspectj.core.tests
	
	

	org.aspectj.lib
	org.aspectj.lib
	

	org.aspectj.runtime
	runtime
	

	org.aspectj.runtime.tests
	
	

	org.aspectj.runtime5
	aspectj5rt
	

	org.aspectj.runtime5.tests
	
	

	org.aspectj.testing
	testing; testing-client; testing-drivers
	

	org.aspectj.testing.tests
	
	

	org.aspectj.testing.util
	testing-util
	

	org.aspectj.testing.util.tests
	
	

	org.aspectj.tests
	tests
	

	org.aspectj.tools.ajbrowser
	ajbrowser
	

	org.aspectj.tools.ajbrowser.tests
	
	

	org.aspectj.tools.ajdoc
	ajdoc
	

	org.aspectj.tools.ajdoc.tests
	
	

	org.aspectj.weaver
	asm; bridge; loadtime; util; weaver; bcel.jar; asm-aj.jar
	need a fragment for ASM

	org.aspectj.weaver.tests
	
	

	org.aspectj.weaver5
	loadtime5; weaver5
	

	org.aspectj.weaver5.tests
	
	

Comments

· Each plug-in project produces a bundle of the same name e.g. org.aspectj.runtime builds to org.aspectj.runtime_1.5.3.jar

· Everything is a bundle: there are no libraries. Libraries that we ship are included in the bundle e.g. BCEL. Libraries we need for build and test are exported from org.aspectj.build.* bundles and imported as necessary e.g. Xerces

· It should be obvious what we do and do not ship

· Each bundle has an accompanying JUnit tests bundle e.g. org.aspectj.weaver5.tests

· All compiler tests are in org.aspectj.tests
Proposed combinations of AspectJ modules

Weaver: asm, util, bridge, weaver, loadtime, weaver5, loadtime5

Compiler: (requires or includes Weaver)
Tools: ajde, aspectjbrowser (are there any other clients of AJDE?) (requires or includes compiler), taskdefs

testing, testing-drivers: remove as unused

testing-client: minimal, jar-only?

tests: separate into testcases (data only). Need to specify Java and/or AspectJ version in the test if not the minimal (1.1, current).

Requirements (duplicative)
Replication

Client requirements

Product users

Command-line users and Ant users

Current library components/locations and script layout

Product documentation bundle

AJDT users

see AJDT developer build

Builders

Summary of build drivers

batch/Ant and interactive/Eclipse builds

Partial and complete builds

JUnit tests

Compiler tests

Product tests

Platform variants

Ant developer build

Ant batch build

AspectJ Eclipse developer build

OSGI Eclipse developer build

AJDT Eclipse developer build

Current expected use patterns

Eclipse-based development

The build documentation should describe how to set up an eclipse environment. Notwithstanding the work done to enable compiler tests to run under Eclipse/JUnit, I assume that before checking in, the developer runs an Ant build to build and test everything as it will be on the build machine. Because this is stricter than the Eclipse projects, it means developers may find problems later than expected.

Ant-based development

The Ant scripts support overall build/test and per-module JUnit tests.

Current assembly semantics

Dependencies and rules

Module dependencies

Specified in .classpath

Differences between the Ant and Eclipse builds

Ant build defined by the minimal build scripts delegating to the Ant "Builder" tasks that read dependencies from the classpath.

Ant permits only dependencies on src

Ant does not support exported libraries

Ant does not support linked source folders

Eclipse does not do Ant module assembly

Prune testsrc for product builds

Prune libraries expected to be in the deployment environment (see Builder.properties skip.libraries). If these are required for testing, they are added in build/build.xml target do-test-junit.

Eclipse does not do product assembly

See build/product and related Builder assembly steps.

Ant manages manifest explicitly (filtering files "{module}/{module}.mf.txt")
Ant manages resource filtering and inclusion explicitly (see Builder.properties resource.pattern and binarySource.pattern).

Ant handles platform explicitly

java5-src and java5-testsrc are assumed to be optional; i.e., the other source directories are compiled without them targeting the minimum VM AspectJ supports. Then the Java 5 folders are compiled with Java 5 VM, producing .class files that require Java 5. This enables Java 5 classes to be loaded from the code defined per the minimum VM when they are running in a Java 5 VM.

However, that means any module that mixes Java5 source must be developed in Eclipse under Java 5, which means the developer can inadvertantly used Java 5 API's

JUnit tests

testsrc

testsrc depends on src

src does not depend on testsrc

no testsrc depends on another testsrc even if a module depends on the other module

testsrc may depend on testing-utils (and testing client)

Execution environment: dir, libraries and resources

testsrc may access (only) module testdata [todo: using testing-utils api?]

testsrc may assume ../lib/test/*.jar and must use that rather than a dependency on ../runtime project to satisfy runtime requirements. Better, use runtime path specified on the command line in build.xml and elsewhere: -Daspectjrtpath=${lib.test.aspectjrt.jar}
Platform: how to skip later platforms when running tests under earlier ones.

Compiler tests

harness source

Currently in tests/newsrc.

Is that, alone, good enough? Can we ditch testing/*? (Need to keep testing-client as library for old tests)

test source

All in tests/*

Execution environment: dir, libraries and resources

Product tests

Semantics

Build

test, module, and all builds: all => both testsrc and src; -testing.jar => only testsrc; module => only src.

Assembly

module assembly: if full, then include all dependencies unless (a) testing-related (e.g., testing-util); or (b) for jar files, excluded in Builder.properties (as expected in the execution environment)

product assembly: use the product directory as a template and Builder.properties to map from {name}.jar to the source project.

New features

�What else do we need?

�No setup required

�Please ellaborate

�Why?

�Use “bundle” rather than “plug-in”

�ASM will be a weaver fragment

�What rules?

�What do you mean? Should all be bundles.

�Don’t ship test or build bundles.

�bundle&jar, source folder (weaver), fragment

�Don’t understand

�ajde needs to be separate. Do we need ajbrowser?

�Don’t do this today. New structure should be as strict as Ant. Public builds use Ant.

