Design for –Xreweavable

Jims Spec (Bug Enhancement Request: 36430)

We should add a –Xreweavable option to generate classfiles that will have enough additional information in them that they can be rewoven. The goal is that in AspectJ-1.3 (or maybe even 1.2.1) this option can become a standard option and the –Xnoweave option can either be removed or left as an X option forever.

In addition to Ramnivas’ example, this option is very important as we start to provide standard support in AspectJ for load-time weaving. In this case we definitely need a standard supported option for building libraries with AspectJ that can be safely passed to a load-time weaver.

The reweavable option is better than the noweave option in many ways. The most significant benefit is that it will produce classfiles that can be legally loaded by a JVM. The noweave option makes it much too easy to produce verify errors. In addition, the reweavable option will make it easier to weave code many times without having to decide which weave is the final one.

Ideally, producing reweavable classfiles should be the default mode for ajc. There is at least one major space issue that needs to be resolved before that can happen.

The implementation of –Xreweavable for 1.2 is straightforward. The

org.aspectj.weaver.WeaverStateInfo attribute needs to be extended to have a reweavable variant. This reweavable variant will include two new field.

1. A list of the fully qualified type names for all aspects that modified the classfile during weaving. BcelClassWeaver will need some minor changes to populate this list. When reweaving, the weaver will check that all of these aspects can be found and issue an error if any are missing.

2. Enough binary information to recover the original unwoven classfile for the current classfile. An initial naïve implementation should simply include all of the bytes from the original classfiles in this slot. This is the potential major space issue. A more advanced version of this implementation should use a binary diff library to minimize the bytes required by only encoding the difference between the woven classfile and the unwoven one. In general, this diff should be very small. Some thought needs to go into making sure that this attribute works well for multiple reweaving steps.

BTW – The ability to reweave classfiles opens up the possibility of some very different incremental compilation models in the command-line ant world. If this attribute goes well those should be explored in the future.

Overview

The compiler will be upgraded to support this option:
-Xreweavable[:compress]

Xreweavable means that the weaver will run in a ‘reweavable mode’ – in this mode any class files it produces will be of a kind such that the weaver can consume them on a later invocation and weave them again. The optional ‘:compress’ suffix means the code that writes out the reweavable class files endeavors to compress the extra data it is including as much as possible – to reduce class file bloat.

Implementation Notes:
Reweavable mode means the weaver produces reweavable class files. Whether the weaver is in this mode or not, it will still consume reweavable class files as input and validate their suitability for inclusion in the weaving process. A weaver in non-reweavable mode that has reweavable classes as input will simply strip out the reweavable information as it processes these reweavable types. This allows the use case where you reweave a number of times but once you are finished, you can produce lightweight non-reweavable classes - kind of ‘final’ versions of the classes (.
Although the reweavable information remembers any aspects whose shadow mungers or type mungers touch a type - it does *NOT* remember any aspects which only have Checkers (declare error/warning) that touch the type. This allows us to apply some coding rules at some point through an aspect but still produces reweavable classes that won’t – at some later time – require the Aspects containing those rules to still be around. This seems a sensible use case?
Implementation

Guiding principle: Avoid impacting straight compilations that don’t want/use this feature. There are a couple of tiny places where this is not the case but mainly all new logic is guarded with checks about whether the weaver is operating reweavably - is that a word? (
WeaverStateInfo – Loads of new stuff.

1) Some new fields remember whether a type is reweavable and whether the class file data stored in the attribute has been compressed. These features are encoded as 2 bits in the kind attribute, rather than being a completely new ‘kind’. The default values for these settings when a new WeaverStateInfo object is created are determined by a pair of static fields that default to false/false and are modified appropriately by any BcelWeaver that is operating in reweavable mode.

2) Another new field is the list of aspects touching this ‘type’ – so aspects whose mungers affected the type in some way. These are stored in the attribute as a count and a list of the types (fully qualified Strings).

3) The compress option means that on writing the class file data (the unwoven class file) we do it using a ZipOutputStream. On reading, if the compress bit is set, we decompress the data. Although Zip is not as good as a binary diff – the mechanism is here to show where such compression techniques could be implemented.

BuildArgParser understands the new –Xreweavable:compress option and sets the state appropriately on the buildConfig object. AjBuildManager where it constructs the BcelWeaver, tells the weaver whether it should operate in reweavable mode by passing on the flags from the buildConfigObject.
BcelWeaver remembers its mode of operation. All the action is in the weave() method. If the weaver is operating in reweavable mode, we get an info message. The next loop is heavily modified. Originally it did a simple ‘resetState’ on each BcelObjectType (which causes us to reparse the class file into the relevant attributes). This has been changed to recognize reweavable types. If any are found (***regardless of whether the weaver is operating in reweavable mode****) then we look at the list of types that previously touched this reweavable type and check that they exist in the BcelWorld. If they don’t then our output from weaving would be unpredictable and so we put out a compiler error message and terminate compilation. If there are types we have to verify the existence of and they are successfully found – we output an info message. If all the valid types exist for a reweavable type, we call BcelObjectType.setJavaClass(byte[]) rather than BcelObjectType.resetState() – this new method allows us to tell the BcelObjectType to rebuild itself based on the original unwoven class file which has also been stored in the WeaverStateInfo attribute.

Still in BcelWeaver, in the weave(ResolvedTypeX onType) method there is a change that has had to be made throughout the AspectJ codebase. Basically there were some mungers (shadow and type) that did not know their source aspect. Because an aim of this feature is to accumulate aspects whose mungers are going to transform a type, we need to be able to reliably ask a munger for its source aspect. There are a few places in the existing codebase where we were passing ‘null’ into the munger and no-one seemed to mind - this new feature needs to rely on the field being correct so the change in this method is to address one of these situations. Unfortunately the solution in this exact spot is a little grim. Because the DeclareParents statement for which the type munger is being built does not know its source aspect, we have to do a quick search of the crosscutting members set to see which aspect this DeclareParents statement came from. This is the only place where the fix for telling a munger its’ type involved a quick search of the crosscutting members data – in the other places the fix was much neater.
The final change in BcelWeaver is the setReweavableMode() method which switches the weaver to the right mode and then tells those that need to know about the mode and compression choice. Two people need to know about reweavable mode: (1) WeaverStateInfo needs to know what kind of attributes it should be creating for any instances built during weaving. (2) BcelClassWeaver needs to know if its’ instances are operating within the scope of a reweavable mode weaver. The reason BcelClassWeaver needs to know is for optimization reasons – only collect the information about reweaving if it is required.
BcelCflowStackAndFieldAdder.ctor() – modified to ensure the new munger knows the aspect from which it originated.

BcelClassWeaver – remembers whether the weaver is operating in reweavable mode or not - in static at the moment…the alternative is to tell BcelClassWeavers what their related weaver instance is – but that requires changing the signature of the BcelClassWeaver ctor. Then the major changes are in the weave() method:

1) We no longer error if a class is already woven *IF* it is marked reweavable.

2) If reweavableMode is active, we initialise a set that will record a list of all aspects touching the type that is being woven. This list will be recorded in the weaverstateinfo for the type.
3) Firstly, if a typemunger matched, we add the name of the originating aspect to the list of aspects affecting this type.

4) Secondly, if a shadowmunger matched, we add the name of the originating aspect to the list of aspects affecting this type.
5) Finally, at the end of weave() – we tell the WeaverStateInfo about the new information it needs to store: the list of aspects affecting this type and we tell it to store its original class file.

BcelObjectType.setJavaClass() – new method that can cause the type to reinitialize with an alternative version of the class file it is representing.

LazyClassGen – some helper methods to access reweavable information contained in the weaver state info object.

CflowPointcut – small change to pass the aspect type across to Advice.makeCflowEntry() so that it constructs an Advice object that knows its originating aspect.

Advice – changes in makeCflowEntry and makeSoftener to ensure the advice objects constructed know their source aspect.

CrosscuttingMembers.addDeclare() – small change to ensure that the ShadowMunger created for Declare Soft knows its originating aspect.
CrosscuttingMembersSet – New helper method to search for which aspect contains a particular declare parents statement – there is probably a better way to do this (see who calls and uses it)
Shadow – Mungers exposed through a getter for use in the BcelClassWeaver code.
Testing

New tests are in “ajde/testsrc/org/aspectj/ajde/ReweavableTestCase.java”

I have also forced –Xreweavable ON and run the whole test harness to check there are no problems (so for every munger that ever applies in the harness, I can successfully determine the source aspect).
Enhancements

The compression code (currently zip) could be enhanced to a binary diff implementation. Possibly doing the binary diff at the point the WeaverStateInfo object is given the class file data, rather than doing it when asked to write it out to disk – this would reduce the in-memory footprint of a reweavable class.
