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Chapter 1

Introduction

idas is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [35]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities, cvodes and idas.

idas is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with
Sensitivity capabilities. idas is an extension of the ida solver within sundials, itself based on
daspk [14, 15]; however, like all sundials solvers, idas is written in ANSI-standard C rather than
Fortran77. Its most notable features are that, (1) in the solution of the underlying nonlinear system
at each time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov
(iterative) methods; (2) it is written in a data-independent manner in that it acts on generic vectors
and matrices without any assumptions on the underlying organization of the data; and (3) it provides
a flexible, extensible framework for sensitivity analysis, using either forward or adjoint methods. Thus
idas shares significant modules previously written within CASC at LLNL to support the ordinary
differential equation (ODE) solvers cvode [36, 22] and pvode [18, 19], the DAE solver ida [39] on
which idas is based, the sensitivity-enabled ODE solver cvodes [37, 53], and also the nonlinear system
solver kinsol [23].

At present, idas may utilize a variety of Krylov methods provided in sundials that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [52],
FGMRES (Flexible Generalized Minimum RESidual) [51], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [56], TFQMR (Transpose-Free Quasi-Minimal Residual) [30], and PCG (Preconditioned Con-
jugate Gradient) [32] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow
for a user-supplied preconditioner matrix, and, for most problems, preconditioning is essential for an
efficient solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the Krylov methods in sundials, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all options, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage
in storage requirements, in that the number of workspace vectors they require is fixed, while that
number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in
that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

idas is written with a functionality that is a superset of that of ida. Sensitivity analysis capabili-
ties, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity
computations in idas will result in the code integrating the so-called sensitivity equations simultane-
ously with the original IVP, yielding both the solution and its sensitivity with respect to parameters
in the model. Adjoint sensitivity analysis, most useful when the gradients of relatively few functionals
of the solution with respect to many parameters are sought, involves integration of the original IVP
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forward in time followed by the integration of the so-called adjoint equations backward in time. idas
provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of
the original IVP (in particular the adjoint system).

There are several motivations for choosing the C language for idas. First, a general movement away
from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for idas because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended Fortran.

1.1 Changes from previous versions

Changes in v4.8.0

The RAJA nvector implementation has been updated to support the SYCL backend in addition to
the CUDA and HIP backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS RAJA BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new sunmatrix and sunlinsol implementation were added to interface with the Intel oneAPI
Math Kernel Library (oneMKL). Both the matrix and the linear solver support general dense linear
systems as well as block diagonal linear systems. See Chapter 11.14 for more details. This module is
experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate
that the next call to SUNlinSolSolve will be made with a zero initial guess. SUNLinearSolver
implementations that do not use the SUNLinSolNewEmpty constructor will, at a minimum, need set
the setzeroguess function pointer in the linear solver ops structure to NULL. The SUNDIALS iterative
linear solver implementations have been updated to leverage this new set function to remove one dot
product per solve.

idas now supports a new “matrix-embedded” sunlinsol type. This type supports user-supplied
sunlinsol implementations that set up and solve the specified linear system at each linear solve call.
Any matrix-related data structures are held internally to the linear solver itself, and are not provided
by the sundials package.

Added the function IDASetNlsResFn to supply an alternative residual side function for use within
nonlinear system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find package.
The exported targets no longer have IMPORTED GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was
not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess
and a solution scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR
as standalone solvers as all sundials packages utilize a zero initial guess.

Fixed a bug with IDASetJacTimesResFn where the supplied function was used in the dense finite
difference Jacobian computation rather than the finite difference Jacobian-vector product approxima-
tion.

Changes in v4.7.0

A new nvector implementation based on the sycl abstraction layer has been added targeting Intel
GPUs. At present the only sycl compiler supported is the DPC++ (Intel oneAPI) compiler. See
Section 9.12 for more details. This module is considered experimental and is subject to major changes
even in minor releases.

A new sunmatrix and sunlinsol implementation were added to interface with the MAGMA
linear algebra library. Both the matrix and the linear solver support general dense linear systems as
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well as block diagonal linear systems, and both are targeted at GPUs (AMD or NVIDIA). See Section
11.13 for more details.

Changes in v4.6.1

Fixed a bug in the sundials CMake which caused an error if the CMAKE CXX STANDARD and
SUNDIALS RAJA BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

Changes in v4.6.0

A new nvector implementation based on the AMD ROCm HIP platform has been added. This
vector can target NVIDIA or AMD GPUs. See 9.10 for more details. This module is considered
experimental and is subject to change from version to version.

The RAJA nvector implementation has been updated to support the HIP backend in addi-
tion to the CUDA backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS RAJA BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new optional operation, N VGetDeviceArrayPointer, was added to the N Vector API. This
operation is useful for N Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA
N Vector.

The SUNMATRIX CUSPARSE and SUNLINEARSOLVER CUSOLVERSP BATCHQR imple-
mentations no longer require the SUNDIALS CUDA N Vector. Instead, they require that the vec-
tor utilized provides the N VGetDeviceArrayPointer operation, and that the pointer returned by
N VGetDeviceArrayPointer is a valid CUDA device pointer.

Changes in v4.5.0

Refactored the sundials build system. CMake 3.12.0 or newer is now required. Users will likely see
deprecation warnings, but otherwise the changes should be fully backwards compatible for almost all
users. sundials now exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

Changes in v4.4.0

Added the function IDASetLSNormFactor to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol L2 = nrmfac * tol WRMS.

Added a new function IDAGetNonlinearSystemData which advanced users might find useful if
providing a custom SUNNonlinSolSysFn.

This change may cause an error in existing user code. The IDASolveF function for forward
integration with checkpointing is now subject to a restriction on the number of time steps allowed to
reach the output time. This is the same restriction applied to the IDASolve function. The default
maximum number of steps is 500, but this may be changed using the IDASetMaxNumSteps function.
This change fixes a bug that could cause an infinite loop in the IDASolveF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the
sunnonlinsol API have been updated to specify that they should return the number of nonlinear
solver iterations and convergence failures in the most recent solve respectively rather than the cumu-
lative number of iterations and failures across all solves respectively. The API documentation and
sundials provided sunnonlinsol implementations have been updated accordingly. As before, the
cumulative number of nonlinear iterations may be retreived by calling IDAGetNumNonlinSolvIters, or
IDAGetSensNumNonlinSolvIters, the cumulative number of failures with IDAGetNumNonlinSolvConvFails

or IDAGetSensNumNonlinSolvConvFails, or both with IDAGetNonlinSolvStats or IDAGetSensNonlinSolvStats.
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A new API, SUNMemoryHelper, was added to support GPU users who have complex memory
management needs such as using memory pools. This is paired with new constructors for the nvec-
tor cuda and nvector raja modules that accept a SUNMemoryHelper object. Refer to sections
8.1,13.1, 9.9 and 9.11 for more information.

The NVECTOR RAJA module has been updated to mirror the NVECTOR CUDA module. Notably, the
update adds managed memory support to the NVECTOR RAJA module. Users of the module will need
to update any calls to the N VMake Raja function because that signature was changed. This module
remains experimental and is subject to change from version to version.

The NVECTOR TRILINOS module has been updated to work with Trilinos 12.18+. This update
changes the local ordinal type to always be an int.

Added support for CUDA v11.

Changes in v4.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the cuda kernel launch parameters for the NVECTOR CUDA and SUNMATRIX CUSPARSE

modules. These modules remain experimental and are subject to change from version to version. In
addition, the NVECTOR CUDA kernels were rewritten to be more flexible. Most users should see equiva-
lent performance or some improvement, but a select few may observe minor performance degradation
with the default settings. Users are encouraged to contact the sundials team about any perfomance
changes that they notice.

Added new capabilities for monitoring the solve phase in the sunnonlinsol newton and sun-
nonlinsol fixedpoint modules, and the sundials iterative linear solver modules. sundials must
be built with the CMake option SUNDIALS BUILD WITH MONITORING to use these capabilties.

Added the optional functions IDASetJacTimesResFn and IDASetJacTimesResFnB to specify an
alternative residual function for computing Jacobian-vector products with the internal difference quo-
tient approximation.

Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE Fortran COMPILER to f2003, xlf2003, or xlf2003 r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some sundials API functions.

Fixed a memory leak from not deallocating the atolSmin0 and atolQSmin0 arrays.

Added a new SUNMatrix implementation, SUNMATRIX CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL CUSOLVER BATCHQR

linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

The functions IDASetLinearSolutionScaling and IDASetLinearSolutionScalingB were added
to enable or disable the scaling applied to linear system solutions with matrix-based linear solvers to
account for a lagged value of α in the linear system matrix ∂F

∂y + α∂F
∂ẏ . Scaling is enabled by default

when using a matrix-based linear solver.

Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Added a new build system option, CUDA ARCH, that can be used to specify the CUDA architecture
to compile for.
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Fixed a build system bug related to finding PETSc when using the CMake variables PETSC INCLUDES

and PETSC LIBRARIES instead of PETSC DIR.
Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying

file pointers that are useful when using the Fortran 2003 interfaces.

Changes in v4.0.0

Build system changes

• Increased the minimum required CMake version to 3.5 for most sundials configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

• The CMake option BLAS ENABLE and the variable BLAS LIBRARIES have been removed to simplify
builds as sundials packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the LIBRARIES variable
for the third party library e.g., SUPERLUDIST LIBRARIES when enabling SuperLU DIST.

• Fixed a bug in the build system that prevented the nvector pthreads module from being
built.

NVECTOR module changes

• Two new functions were added to aid in creating custom nvector objects. The constructor
N VNewEmpty allocates an “empty” generic nvector with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
nvector API by ensuring only required operations need to be set. Additionally, the function
N VCopyOps(w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the nvector API by ensuring all operations are
copied when cloning objects. See §9.1.6 for more details.

• Two new nvector implementations, nvector manyvector and nvector mpimanyvector,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU + GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
sundials examples. See §9.15 and §9.16 for more details.

• One new required vector operation and ten new optional vector operations have been added to
the nvector API. The new required operation, N VGetLength, returns the global length of an
N Vector. The optional operations have been added to support the new
nvector mpimanyvector implementation. The operation N VGetCommunicator must be im-
plemented by subvectors that are combined to create an nvector mpimanyvector, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N VDotProdLocal, N VMaxNormLocal, N VMinLocal, N VL1NormLocal, N VWSqrSumLocal,
N VWSqrSumMaskLocal, N VInvTestLocal, N VConstrMaskLocal, and N VMinQuotientLocal.
If an nvector implementation defines any of the local operations as NULL, then the nvec-
tor mpimanyvector will call standard nvector operations to complete the computation.
See §9.1.4 for more details.

• An additional nvector implementation, nvector mpiplusx, has been created to support
the MPI+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and sundials examples.
See §9.17 for more details.
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• The * MPICuda and * MPIRaja functions have been removed from the nvector cuda and
nvector raja implementations respectively. Accordingly, the nvector mpicuda.h,
nvector mpiraja.h, libsundials nvecmpicuda.lib, and libsundials nvecmpicudaraja.lib

files have been removed. Users should use the nvector mpiplusx module coupled in conjunc-
tion with the nvector cuda or nvector raja modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the nvec-
tor mpiplusx module with the nvector cuda and nvector raja modules respectively.

• Fixed a memory leak in the nvector petsc module clone function.

• Made performance improvements to the nvector cuda module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

• Added a new constructor to the nvector cuda module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §9.9.1
for more details.

• Added new Fortran 2003 interfaces for most nvector modules. See Chapter 9 for more details
on how to use the interfaces.

• Added three new nvector utility functions, FN VGetVecAtIndexVectorArray,
FN VSetVecAtIndexVectorArray, and FN VNewVectorArray, for working with N Vector arrays
when using the Fortran 2003 interfaces. See §9.1.6 for more details.

SUNMatrix module changes

• Two new functions were added to aid in creating custom sunmatrix objects. The constructor
SUNMatNewEmpty allocates an “empty” generic sunmatrix with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
sunmatrix API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps(A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the sunmatrix API by ensuring all operations
are copied when cloning objects. See §10.1.2 for more details.

• A new operation, SUNMatMatvecSetup, was added to the sunmatrix API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for sunmatrix imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom sunmatrix modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §10.1.1 for more details.

• The generic sunmatrix API now defines error codes to be returned by sunmatrix operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §10.1.3 for more details.

• A new sunmatrix (and sunlinsol) implementation was added to facilitate the use of the
SuperLU DIST library with sundials. See §10.6 for more details.

• Added new Fortran 2003 interfaces for most sunmatrix modules. See Chapter 10 for more
details on how to use the interfaces.
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SUNLinearSolver module changes

• A new function was added to aid in creating custom sunlinsol objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic sunlinsol with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the sunlinsol API by ensuring only required operations need to be set. See §11.3
for more details.

• The return type of the sunlinsol API function SUNLinSolLastFlag has changed from long

int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

• Added a new optional operation to the sunlinsol API, SUNLinSolGetID, that returns a
SUNLinearSolver ID for identifying the linear solver module.

• The sunlinsol API has been updated to make the initialize and setup functions optional.

• A new sunlinsol (and sunmatrix) implementation was added to facilitate the use of the
SuperLU DIST library with sundials. See §11.10 for more details.

• Added a new sunlinsol implementation, SUNLinearSolver cuSolverSp batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §11.12 for more details.

• Added three new accessor functions to the sunlinsol klu module, SUNLinSol KLUGetSymbolic,
SUNLinSol KLUGetNumeric, and SUNLinSol KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §11.9.2 for more details.

• Added new Fortran 2003 interfaces for most sunlinsol modules. See Chapter 11 for more
details on how to use the interfaces.

SUNNonlinearSolver module changes

• A new function was added to aid in creating custom sunnonlinsol objects. The constructor
SUNNonlinSolNewEmpty allocates an “empty” generic sunnonlinsol with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in
the constructor for custom objects this function will ease the introduction of any new optional
operations to the sunnonlinsol API by ensuring only required operations need to be set. See
§12.1.8 for more details.

• To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn function in the sunnonlinsol API has been updated to take a
void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver
convergence test function on each call.

• The inputs values passed to the first two inputs of the SUNNonlinSolSolve function in the sun-
nonlinsol have been changed to be the predicted state and the initial guess for the correction to
that state. Additionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn

in the sunnonlinsol API have been updated to remove unused input parameters. For more
information on the nonlinear system formulation see §12.2 and for more details on the API
functions see Chapter 12.

• Added a new sunnonlinsol implementation, sunnonlinsol petscsnes, which interfaces to
the PETSc SNES nonlinear solver API. See §12.4 for more details.

• Added new Fortran 2003 interfaces for most sunnonlinsol modules. See Chapter 12 for more
details on how to use the interfaces.
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IDAS changes

• A bug was fixed in the idas linear solver interface where an incorrect Jacobian-vector product
increment was used with iterative solvers other than sunlinsol spgmr and sunlinsol spfgmr.

• Fixed a bug where the IDASolveF function would not return a root in IDA NORMAL STEP mode
if the root occurred after the desired output time.

• Fixed a bug where the IDASolveF function would return the wrong flag under certrain cirum-
stances.

• Fixed a bug in IDAQuadReInitB where an incorrect memory structure was passed to IDAQuadReInit.

• Removed extraneous calls to N VMin for simulations where the scalar valued absolute tolerance,
or all entries of the vector-valued absolute tolerance array, are strictly positive. In this scenario,
idas will remove at least one global reduction per time step.

• The IDALS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER DIRECT.

• Added the new functions, IDAGetCurentCj, IDAGetCurrentY, IDAGetCurrentYp,
IDAComputeCurrentY, IDAComputeCurrentYp, IDAGetCurrentYSens, IDAGetCurrentYpSens,
IDAComputeCurrentYSens, and IDAComputeCurrentYpSens, which may be useful to users who
choose to provide their own nonlinear solver implementations.

• Added a Fortran 2003 interface to idas. See Chapter 7 for more details.

Changes in v3.1.0

An additional nvector implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between sundials and Trilinos. This implementation is accompanied by
additions to user documentation and sundials examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.
The EXAMPLES ENABLE RAJA CMake option has been removed. The option EXAMPLES ENABLE CUDA

enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA nvector is enabled).

The implementation header file idas impl.h is no longer installed. This means users who are
directly manipulating the IDAMem structure will need to update their code to use idas’s public API.

Python is no longer required to run make test and make test install.

Changes in v3.0.2

Added information on how to contribute to sundials and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The

symbols are now included in the idas library, libsundials idas.

Changes in v3.0.1

No changes were made in this release.

Changes in v3.0.0

idas’ previous direct and iterative linear solver interfaces, idadls and idaspils, have been merged
into a single unified linear solver interface, idals, to support any valid sunlinsol module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX ITERATIVE” type.
Details regarding how idals utilizes linear solvers of each type as well as discussion regarding intended
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use cases for user-supplied sunlinsol implementations are included in Chapter 11. All idas example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new idals module is very similar to the previous idadls and idaspils
interfaces. To minimize challenges in user migration to the new names, the previous C routine names
may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon.

The names of all constructor routines for sundials-provided sunlinsol implementations have
been updated to follow the naming convention SUNLinSol * where * is the name of the linear solver.
The new names are SUNLinSol Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol LapackBand,
SUNLinSol LapackDense, SUNLinSol PCG, SUNLinSol SPBCGS, SUNLinSol SPFGMR, SUNLinSol SPGMR,
SUNLinSol SPTFQMR, and SUNLinSol SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users mi-
grate to the new names soon. All idas example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

sundials integrators have been updated to utilize generic nonlinear solver modules defined through
the sunnonlinsol API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The sunnonlinsol API and sundials provided modules
are described in Chapter 12 and follow the same object oriented design and implementation used by
the nvector, sunmatrix, and sunlinsol modules. Currently two sunnonlinsol implementations
are provided, sunnonlinsol newton and sunnonlinsol fixedpoint. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the sunnonlinsol fixedpoint module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all idas example programs
have been updated to use generic sunnonlinsol modules.

By default idas uses the sunnonlinsol newton module. Since idas previously only used an
internal implementation of a Newton iteration no changes are required to user programs and func-
tions for setting the nonlinear solver options (e.g., IDASetMaxNonlinIters) or getting nonlinear solver
statistics (e.g., IDAGetNumNonlinSolvIters) remain unchanged and internally call generic sunnon-
linsol functions as needed. While sundials includes a fixed-point nonlinear solver module, it is not
currently supported in idas. For details on attaching a user-supplied nonlinear solver to idas see
Chapter 4, 5, and 6.

Three fused vector operations and seven vector array operations have been added to the nvec-
tor API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an nvector (see Chapter 9 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N VLinearCombination, N VScaleAddMulti, and N VDotProdMulti and the vector array
operations are N VLinearCombinationVectorArray, N VScaleVectorArray, N VConstVectorArray,
N VWrmsNormVectorArray, N VWrmsNormMaskVectorArray, N VScaleAddMultiVectorArray, and
N VLinearCombinationVectorArray. If an nvector implementation defines any of these operations
as NULL, then standard nvector operations will automatically be called as necessary to complete the
computation.

Multiple updates to nvector cuda were made:

• Changed N VGetLength Cuda to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Cuda to return the local vector length.

• Added N VGetMPIComm Cuda to return the MPI communicator used.
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• Removed the accessor functions in the namespace suncudavec.

• Changed the N VMake Cuda function to take a host data pointer and a device data pointer instead
of an N VectorContent Cuda object.

• Added the ability to set the cudaStream t used for execution of the nvector cuda kernels.
See the function N VSetCudaStreams Cuda.

• Added N VNewManaged Cuda, N VMakeManaged Cuda, and N VIsManagedMemory Cuda functions
to accommodate using managed memory with the nvector cuda.

Multiple changes to nvector raja were made:

• Changed N VGetLength Raja to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Raja to return the local vector length.

• Added N VGetMPIComm Raja to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

A new nvector implementation for leveraging OpenMP 4.5+ device offloading has been added,
nvector openmpdev. See §9.13 for more details.

Changes in v2.2.1

The changes in this minor release include the following:

• Fixed a bug in the cuda nvector where the N VInvTest operation could write beyond the
allocated vector data.

• Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE INSTALL PREFIX/CMAKE INSTALL LIBDIR from CMAKE INSTALL PREFIX/lib.
CMAKE INSTALL LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v2.2.0

Fixed a bug in idas where the saved residual value used in the nonlinear solve for consistent initial
conditions was passed as temporary workspace and could be overwritten.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define STDC VERSION .

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the raja nvector library to libsundials nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support cuda as a backend for raja cur-
rently.

Several changes were made to the build system:

• CMake 3.1.3 is now the minimum required CMake version.

• Deprecate the behavior of the SUNDIALS INDEX TYPE CMake option and added the
SUNDIALS INDEX SIZE CMake option to select the sunindextype integer size.
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• The native CMake FindMPI module is now used to locate an MPI installation.

• If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

• The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI C COMPILER, MPI CXX COMPILER, MPI Fortran COMPILER, and
MPIEXEC EXECUTABLE.

• When a Fortran name-mangling scheme is needed (e.g., ENABLE LAPACK is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS F77 FUNC CASE

and SUNDIALS F77 FUNC UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

• Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

Changes in v2.1.2

The changes in this minor release include the following:

• Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

• Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the sundials index type. On Windows sunindextype is now defined as the
MSVC basic type int64.

• Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

• Updated the KLU sunlinsol module to set constants for the two reinitialization types, and
fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would go
out of scope on some architectures.

• Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + γJ manually (with zero entries if needed).

• Changed the LICENSE install path to instdir/include/sundials.

Changes in v2.1.1

The changes in this minor release include the following:

• Fixed a potential memory leak in the spgmr and spfgmr linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

• Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

• Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

• Bugfix in sunmatrix sparse.c where we had used int instead of sunindextype in one location.

• Added missing #include <stdio.h> in nvector and sunmatrix header files.
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• Added missing prototype for IDASpilsGetNumJTSetupEvals.

• Fixed an indexing bug in the cuda nvector implementation of N VWrmsNormMask and revised
the raja nvector implementation of N VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the raja vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v2.1.0

Added nvector print functions that write vector data to a specified file (e.g., N VPrintFile Serial).
Added make test and make test install options to the build system for testing sundials after

building with make and installing with make install respectively.

Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation and
to ease interfacing of custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

• Added generic sunmatrix module with three provided implementations: dense, banded and
sparse. These replicate previous sundials Dls and Sls matrix structures in a single object-
oriented API.

• Added example problems demonstrating use of generic sunmatrix modules.

• Added generic SUNLinearSolver module with eleven provided implementations: sundials na-
tive dense, sundials native banded, LAPACK dense, LAPACK band, KLU, SuperLU MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous sundials generic
linear solvers in a single object-oriented API.

• Added example problems demonstrating use of generic SUNLinearSolver modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic sunmatrix and SUNLinearSolver objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces
and SUNLinearSolver/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate
Jacobian solver available to cvode and cvodes.

• Converted all sundials example problems and files to utilize the new generic sunmatrix and
SUNLinearSolver objects, along with updated Dls and Spils linear solver interfaces.

• Added Spils interface routines to arkode, cvode, cvodes, ida, and idas to allow specification
of a user-provided ”JTSetup” routine. This change supports users who wish to set up data
structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where the cost
of one JTSetup setup per Newton iteration can be amortized between multiple JTimes calls.

Two additional nvector implementations were added – one for cuda and one for raja vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about raja, users
are referred to the web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.
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All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32 t or int64 t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
sundials.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE

have been changed to SUNTRUE and SUNFALSE respectively.
Temporary vectors were removed from preconditioner setup and solve routines for all packages. It

is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials fconfig.h was added. This file contains sundials type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get sundials release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS ENABLE and BLAS LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES ENABLE to EXAMPLES ENABLE C, changing CXX ENABLE to EXAMPLES ENABLE CXX, changing
F90 ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC in ida.h.
Corrections and additions were made to the examples, to installation-related files, and to the user

documentation.

Changes in v1.3.0

Two additional nvector implementations were added – one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface func-
tions and to user documentation.

Each nvector module now includes a function, N VGetVectorID, that returns the nvector
module name.

An optional input function was added to set a maximum number of linesearch backtracks in
the initial condition calculation, and four user-callable functions were added to support the use of
LAPACK linear solvers in solving backward problems for adjoint sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver linit function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A bug in for-loop indices was fixed in IDAAckpntAllocVectors. A bug was fixed in the interpo-
lation functions used in solving backward problems.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU MT,
including support for CSR format when using KLU.

New examples were added for use of the OpenMP vector and for use of sparse direct solvers within
sensitivity integrations.
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Minor corrections and additions were made to the idas solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v1.2.0

Two major additions were made to the linear system solvers that are available for use with the idas
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the nvector module. As part of
these additions, a sparse matrix (CSC format) structure was added to idas.

Otherwise, only relatively minor modifications were made to idas:
In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a

line was added to break out of root-search loop if the initial interval size is below the tolerance ttol.
In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an

illegal input error for DGBTRF/DGBTRS.
An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:

With a call to IDADlsSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-
supplied Jacobian function of type IDADls***JacFnBS, for the case where the backward problem
depends on the forward sensitivities.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve.
For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward

sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.
In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,

SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the User Guide, a paragraph was added in Section 6.2.1 on IDAAdjReInit, and a paragraph
was added in Section 6.2.9 on IDAGetAdjY.

Two new nvector modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v1.1.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, re-
spectively. In a minor change to the user interface, the type of the index which in IDAS was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.
A large number of minor errors have been fixed. Among these are the following: A missing

vector pointer setting was added in IDASensLineSrch. In IDACompleteStep, conditionals around
lines loading a new column of three auxiliary divided difference arrays, for a possible order increase,
were fixed. After the solver memory is created, it is set to zero before being filled. In each linear solver
interface function, the linear solver memory is freed on an error return, and the **Free function now
includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak
was fixed in two of the IDASp***Free functions. In the rootfinding functions IDARcheck1/IDARcheck2,
when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of
shifting the t location tlo slightly. In the installation files, we modified the treatment of the macro
SUNDIALS USE GENERIC MATH, so that the parameter GENERIC MATH LIB is either defined
(with no value) or not defined.
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1.2 Reading this User Guide

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by idas for
the solution of initial value problems for systems of DAEs, continue with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3), and then give an overview of the mathematical
aspects of sensitivity analysis, both forward (§2.5) and adjoint (§2.6).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the idas solver (§3.2).

• Chapter 4 is the main usage document for idas for simulation applications. It includes a complete
description of the user interface for the integration of DAE initial value problems. Readers that
are not interested in using idas for sensitivity analysis can then skip the next two chapters.

• Chapter 5 describes the usage of idas for forward sensitivity analysis as an extension of its IVP
integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

• Chapter 6 describes the usage of idas for adjoint sensitivity analysis. We begin by describing
the idas checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

• Chapter 9 gives a brief overview of the generic nvector module shared amongst the various
components of sundials, as well as details on the nvector implementations provided with
sundials.

• Chapter 10 gives a brief overview of the generic sunmatrix module shared among the vari-
ous components of sundials, and details on the sunmatrix implementations provided with
sundials: a dense implementation (§10.3), a banded implementation (§10.4) and a sparse im-
plementation (§10.5).

• Chapter 11 gives a brief overview of the generic sunlinsol module shared among the various
components of sundials. This chapter contains details on the sunlinsol implementations
provided with sundials. The chapter also contains details on the sunlinsol implementations
provided with sundials that interface with external linear solver libraries.

• Chapter 12 describes the sunnonlinsol API and nonlinear solver implementations shared
among the various components of sundials.

• Finally, in the appendices, we provide detailed instructions for the installation of idas, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from idas functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as idals, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin. !
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1.3 SUNDIALS Release License

All sundials packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all sundials packages.

If you are using sundials with any third party libraries linked in (e.g., LAPACK, KLU, Su-!

perLU MT, petsc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the sundials license. For example, if someone builds sundials
with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the sundials BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2021, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
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or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)





Chapter 2

Mathematical Considerations

idas solves the initial-value problem (IVP) for a DAE system of the general form

F (t, y, ẏ) = 0 , y(t0) = y0 , ẏ(t0) = ẏ0 , (2.1)

where y, ẏ, and F are vectors in RN , t is the independent variable, ẏ = dy/dt, and initial values y0,
ẏ0 are given. (Often t is time, but it certainly need not be.)

Additionally, if (2.1) depends on some parameters p ∈ RNp , i.e.

F (t, y, ẏ, p) = 0

y(t0) = y0(p) , ẏ(t0) = ẏ0(p) ,
(2.2)

idas can also compute first order derivative information, performing either forward sensitivity analysis
or adjoint sensitivity analysis. In the first case, idas computes the sensitivities of the solution with
respect to the parameters p, while in the second case, idas computes the gradient of a derived function
with respect to the parameters p.

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
y0 and ẏ0 are both initialized to satisfy the DAE residual F (t0, y0, ẏ0) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, idas provides a routine that computes consistent
initial conditions from a user’s initial guess [15]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yd and ya, which are its differential and algebraic parts, respectively,
such that F depends on ẏd but not on any components of ẏa. The assumption that the system is
“index one” means that for a given t and yd, the system F (t, y, ẏ) = 0 defines ya uniquely. In this
case, a solver within idas computes ya and ẏd at t = t0, given yd and an initial guess for ya. A second
available option with this solver also computes all of y(t0) given ẏ(t0); this is intended mainly for quasi-
steady-state problems, where ẏ(t0) = 0 is given. In both cases, ida solves the system F (t0, y0, ẏ0) = 0
for the unknown components of y0 and ẏ0, using Newton iteration augmented with a line search global
strategy. In doing this, it makes use of the existing machinery that is to be used for solving the linear
systems during the integration, in combination with certain tricks involving the step size (which is set
artificially for this calculation). For problems that do not fall into either of these categories, the user
is responsible for passing consistent values, or risks failure in the numerical integration.

The integration method used in idas is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [11]. The method order ranges from 1 to 5,
with the BDF of order q given by the multistep formula

q∑
i=0

αn,iyn−i = hnẏn , (2.3)



20 Mathematical Considerations

where yn and ẏn are the computed approximations to y(tn) and ẏ(tn), respectively, and the step size
is hn = tn− tn−1. The coefficients αn,i are uniquely determined by the order q, and the history of the
step sizes. The application of the BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

G(yn) ≡ F

(
tn, yn, h

−1
n

q∑
i=0

αn,iyn−i

)
= 0 . (2.4)

By default idas solves (2.4) with a Newton iteration but idas also allows for user-defined nonlinear
solvers (see Chapter 12). Each Newton iteration requires the soution of a linear system of the form

J [yn(m+1) − yn(m)] = −G(yn(m)) , (2.5)

where yn(m) is the m-th approximation to yn. Here J is some approximation to the system Jacobian

J =
∂G

∂y
=
∂F

∂y
+ α

∂F

∂ẏ
, (2.6)

where α = αn,0/hn. The scalar α changes whenever the step size or method order changes.
For the solution of the linear systems within the Newton iteration, idas provides several choices,

including the option of a user-supplied linear solver module (see Chapter 11). The linear solver
modules distributed with sundials are organized in two families, a direct family comprising direct
linear solvers for dense, banded, or sparse matrices and a spils family comprising scaled preconditioned
iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

• band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [24, 3], or the thread-
enabled SuperLU MT sparse solver library [45, 26, 9] (serial or threaded vector modules only)
[Note that users will need to download and install the klu or superlumt packages independent
of idas],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver with
or without restarts,

• spfgmr, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver with or without restarts,

• spbcgs, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

• pcg, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and
a preconditioned Krylov method yields a powerful tool because it combines established methods for
stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment
of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [13]. For
the spils linear solvers with idas, preconditioning is allowed only on the left (see §2.2). Note that
the dense, band, and sparse direct linear solvers can only be used with serial and threaded vector
representations.



2.1 IVP solution 21

In the process of controlling errors at various levels, idas uses a weighted root-mean-square norm,
denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi|+ atoli] . (2.7)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton
iteration, in that the Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations,
with a coefficient ᾱ in place of α in J . However, in the case that a matrix-free iterative linear solver is
used, the default Newton iteration is an Inexact Newton iteration, in which J is applied in a matrix-
free manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. In this case, the linear residual J∆y+G is nonzero but controlled. With the default Newton
iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

• starting the problem,

• the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or

• a non-fatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

The default stopping test for nonlinear solver iterations in idas ensures that the iteration error
yn−yn(m) is small relative to y itself. For this, we estimate the linear convergence rate at all iterations
m > 1 as

R =

(
δm
δ1

) 1
m−1

,

where the δm = yn(m) − yn(m−1) is the correction at iteration m = 1, 2, . . .. The nonlinear solver
iteration is halted if R > 0.9. The convergence test at the m-th iteration is then

S‖δm‖ < 0.33 , (2.8)

where S = R/(R−1) whenever m > 1 and R ≤ 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with α 6= ᾱ. Note that at m = 1, the
convergence test (2.8) uses an old value for S. Therefore, at the first nonlinear solver iteration, we
make an additional test and stop the iteration if ‖δ1‖ < 0.33 · 10−4 (since such a δ1 is probably just
noise and therefore not appropriate for use in evaluating R). We allow only a small number (default
value 4) of nonlinear iterations. If convergence fails with J or P current, we are forced to reduce the
step size hn, and we replace hn by hn/4. The integration is halted after a preset number (default
value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations and
the maximum number of nonlinear convergence failures can be changed by the user from their default
values.

When an iterative method is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require the preconditioned
linear residual to be small relative to the allowed error in the nonlinear iteration, i.e., ‖P−1(Jx+G)‖ <
0.05 · 0.33. The safety factor 0.05 can be changed by the user.

When the Jacobian is stored using either dense or band sunmatrix objects, the Jacobian J defined
in (2.6) can be either supplied by the user or have idas compute one internally by difference quotients.
In the latter case, we use the approximation

Jij = [Fi(t, y + σjej , ẏ + ασjej)− Fi(t, y, ẏ)]/σj , with

σj =
√
U max {|yj |, |hẏj |, 1/Wj} sign(hẏj) ,
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where U is the unit roundoff, h is the current step size, and Wj is the error weight for the component
yj defined by (2.7). We note that with sparse and user-supplied sunmatrix objects, the Jacobian
must be supplied by a user routine.

In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are
approximated by

Jv = [F (t, y + σv, ẏ + ασv)− F (t, y, ẏ)]/σ ,

where the increment σ = 1/‖v‖. As an option, the user can specify a constant factor that is inserted
into this expression for σ.

During the course of integrating the system, idas computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

‖LTE‖WRMS ≤ 1 .

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the predictor-corrector difference
∆n ≡ yn − yn(0). Thus there is a constant C such that

LTE = C∆n +O(hq+2) ,

and so the norm of LTE is estimated as |C| · ‖∆n‖. In addition, idas requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C̄‖∆n‖ for another constant C̄. Thus the local error test in
idas is

max{|C|, C̄}‖∆n‖ ≤ 1 . (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.9), if these have been so identified.

In idas, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.9) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, idas uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders q′

equal to q, q− 1 (if q > 1), q− 2 (if q > 2), or q+ 1 (if q < 5), there are constants C(q′) such that the
norm of the local truncation error at order q′ satisfies

LTE(q′) = C(q′)‖φ(q′ + 1)‖+O(hq
′+2) ,

where φ(k) is a modified divided difference of order k that is retained by idas (and behaves asymp-
totically as hk). Thus the local truncation errors are estimated as ELTE(q′) = C(q′)‖φ(q′ + 1)‖ to
select step sizes. But the choice of order in idas is based on the requirement that the scaled derivative
norms, ‖hky(k)‖, are monotonically decreasing with k, for k near q. These norms are again estimated
using the φ(k), and in fact

‖hq
′+1y(q

′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTE(q′) .

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to q′ = q−1 if (a) q = 2 and T (1) ≤ T (2)/2, or (b) q > 2
and max{T (q − 1), T (q − 2)} ≤ T (q); otherwise q′ = q. Next the local error test (2.9) is performed,
and if it fails, the step is redone at order q ← q′ and a new step size h′. The latter is based on the
hq+1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

η = h′/h = 0.9/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted so that 0.25 ≤ η ≤ 0.9 before setting h ← h′ = ηh. If the local error test
fails a second time, idas uses η = 0.25, and on the third and subsequent failures it uses q = 1 and
η = 0.25. After 10 failures, idas returns with a give-up message.
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As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if q′ = q−1 from the prior test, if q = 5, or if q was increased on the previous
step. Otherwise, if the last q + 1 steps were taken at a constant order q < 5 and a constant step size,
idas considers raising the order to q + 1. The logic is as follows: (a) If q = 1, then reset q = 2 if
T (2) < T (1)/2. (b) If q > 1 then

• reset q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)};

• else reset q ← q + 1 if T (q + 1) < T (q);

• leave q unchanged otherwise [then T (q − 1) > T (q) ≤ T (q + 1)].

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted such that (a) if η > 2, η is reset to 2; (b) if η ≤ 1, η is restricted to
0.5 ≤ η ≤ 0.9; and (c) if 1 < η < 2 we use η = 1. Finally h is reset to h′ = ηh. Thus we do not
increase the step size unless it can be doubled. See [11] for details.

idas permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0,
or yi ≤ 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the nonlinear iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, idas estimates a new step size h′ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions. If a step fails to satisfy the constraints repeatedly within
a step attempt then the integration is halted and an error is returned. In this case the user may need
to employ other strategies as discussed in §4.5.2 to satisfy the inequality constraints.

Normally, idas takes steps until a user-defined output value t = tout is overtaken, and then
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force idas not to integrate
past a given stopping point t = tstop.

2.2 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form J∆y = −G (e.g.,
the default Newton iteration), idas makes repeated use of a linear solver. If this linear system solve
is done with one of the scaled preconditioned iterative linear solvers supplied with sundials, these
solvers are rarely successful if used without preconditioning; it is generally necessary to precondition
the system in order to obtain acceptable efficiency. A system Ax = b can be preconditioned on the
left, on the right, or on both sides. The Krylov method is then applied to a system with the matrix
P−1A, or AP−1, or P−1L AP−1R , instead of A. However, within idas, preconditioning is allowed only on
the left, so that the iterative method is applied to systems (P−1J)∆y = −P−1G. Left preconditioning
is required to make the norm of the linear residual in the nonlinear iteration meaningful; in general,
‖J∆y +G‖ is meaningless, since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-
dependent (for example, see [13] for an extensive study of preconditioners for reaction-transport
systems).

Typical preconditioners used with idas are based on approximations to the iteration matrix of
the systems involved; in other words, P ≈ ∂F

∂y + α∂F
∂ẏ , where α is a scalar inversely proportional to

the integration step size h. Because the Krylov iteration occurs within a nonlinear solver iteration
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and further also within a time integration, and since each of these iterations has its own test for
convergence, the preconditioner may use a very crude approximation, as long as it captures the
dominant numerical feature(s) of the system. We have found that the combination of a preconditioner
with the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be
surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.3 Rootfinding

The idas solver has been augmented to include a rootfinding feature. This means that, while inte-
grating the Initial Value Problem (2.1), idas can also find the roots of a set of user-defined functions
gi(t, y, ẏ) that depend on t, the solution vector y = y(t), and its t−derivative ẏ(t). The number of
these root functions is arbitrary, and if more than one gi is found to have a root in any given interval,
the various root locations are found and reported in the order that they occur on the t axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of gi(t, y(t), ẏ(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by idas. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [33].
In addition, each time g is computed, idas checks to see if gi(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any gi is found at a point t, idas computes g at t+ δ for a small
increment δ, slightly further in the direction of integration, and if any gi(t + δ) = 0 also, idas stops
and reports an error. This way, each time idas takes a time step, it is guaranteed that the values of
all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, idas has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is
further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the end
of the time step last taken, or the next requested output time tout if this comes sooner. The endpoint
tlo is either tn−1, or the last output time tout (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward tn if an exact
zero was found. The algorithm checks g at thi for zeros and for sign changes in (tlo, thi). If no sign
changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the next time
interval (starting at thi). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is reset
to tmid according to which subinterval is found to have the sign change. If there is none in (tlo, tmid)
but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ , and then
the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs high,
i.e. toward tlo vs toward thi) in which the sign change was found in the previous two passes. If the
two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
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side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi
when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.

2.4 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.6) it is of interest to compute integral quantities of the form

z(t) =

∫ t

t0

q(τ, y(τ), ẏ(τ), p) dτ . (2.10)

The most effective approach to compute z(t) is to extend the original problem with the additional
ODEs (obtained by applying Leibnitz’s differentiation rule):

ż = q(t, y, ẏ, p) , z(t0) = 0 . (2.11)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to idas the extended DAE system
(2.2)+(2.10). However, in the context of an implicit integration solver, this approach is not desir-
able since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this
extended DAE. Moreover, since the additional states, z, do not enter the right-hand side of the ODE
(2.10) and therefore the residual of the extended DAE system does not depend on z, it is much more
efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking
out” the additional states z from the nonlinear system (2.4) that must be solved in the correction step
of the LMM. Instead, “corrected” values zn are computed explicitly as

zn =
1

αn,0

(
hnq(tn, yn, ẏn, p)−

q∑
i=1

αn,izn−i

)
,

once the new approximation yn is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding

relative and absolute tolerances must be provided.

2.5 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the DAEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector si(t) =
∂y(t)/∂pi and satisfies the following forward sensitivity equations (or sensitivity equations for short):

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
= 0

si(t0) =
∂y0(p)

∂pi
, ṡi(t0) =

∂ẏ0(p)

∂pi
,

(2.12)

obtained by applying the chain rule of differentiation to the original DAEs (2.2).
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When performing forward sensitivity analysis, idas carries out the time integration of the combined
system, (2.2) and (2.12), by viewing it as a DAE system of size N(Ns + 1), where Ns is the number
of model parameters pi, with respect to which sensitivities are desired (Ns ≤ Np). However, major
improvements in efficiency can be made by taking advantage of the special form of the sensitivity
equations as linearizations of the original DAEs. In particular, the original DAE system and all
sensitivity systems share the same Jacobian matrix J in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected
for the original DAEs and the same linear solver is used in the correction phase for both state and
sensitivity variables. In addition, idas offers the option of including (full error control) or excluding
(partial error control) the sensitivity variables from the local error test.

2.5.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined DAE and sensitivity system for the vector ŷ = [y, s1, . . . , sNs

].

• Staggered Direct In this approach [21], the nonlinear system (2.4) is first solved and, once an
acceptable numerical solution is obtained, the sensitivity variables at the new step are found
by directly solving (2.12) after the BDF discretization is used to eliminate ṡi. Although the
system matrix of the above linear system is based on exactly the same information as the
matrix J in (2.6), it must be updated and factored at every step of the integration, in contrast
to an evaluation of J which is updated only occasionally. For problems with many parameters
(relative to the problem size), the staggered direct method can outperform the methods described
below [44]. However, the computational cost associated with matrix updates and factorizations
makes this method unattractive for problems with many more states than parameters (such as
those arising from semidiscretization of PDEs) and is therefore not implemented in idas.

• Simultaneous Corrector In this method [48], the discretization is applied simultaneously to both
the original equations (2.2) and the sensitivity systems (2.12) resulting in an “extended” non-
linear system Ĝ(ŷn) = 0 where ŷn = [yn, . . . , si, . . .]. This combined nonlinear system can be
solved using a modified Newton method as in (2.5) by solving the corrector equation

Ĵ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (2.13)

at each iteration, where

Ĵ =


J
J1 J
J2 0 J
...

...
. . .

. . .

JNs 0 . . . 0 J

 ,
J is defined as in (2.6), and Ji = (∂/∂y) [Fysi + Fẏ ṡi + Fpi ]. It can be shown that 2-step

quadratic convergence can be retained by using only the block-diagonal portion of Ĵ in the
corrector equation (2.13). This results in a decoupling that allows the reuse of J without
additional matrix factorizations. However, the sum Fysi + Fẏ ṡi + Fpi must still be reevaluated

at each step of the iterative process (2.13) to update the sensitivity portions of the residual Ĝ.

• Staggered corrector In this approach [29], as in the staggered direct method, the nonlinear system
(2.4) is solved first using the Newton iteration (2.5). Then, for each sensitivity vector ξ ≡ si, a
separate Newton iteration is used to solve the sensitivity system (2.12):

J [ξn(m+1) − ξn(m)] =

−

[
Fy(tn, yn, ẏn)ξn(m) + Fẏ(tn, yn, ẏn) · h−1n

(
αn,0ξn(m) +

q∑
i=1

αn,iξn−i

)
+ Fpi(tn, yn, ẏn)

]
.

(2.14)
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In other words, a modified Newton iteration is used to solve a linear system. In this approach,
the matrices ∂F/∂y, ∂F/∂ẏ and vectors ∂F/∂pi need be updated only once per integration step,
after the state correction phase (2.5) has converged.

idas implements both the simultaneous corrector method and the staggered corrector method.
An important observation is that the staggered corrector method, combined with a Krylov linear

solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix J on a vector, and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.

2.5.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, idas provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector si will have units of [y]/[pi]. With this, the absolute tolerance for the j-th
component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the absolute tolerances for
the state variables and p̄ is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
si with weights based on si be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities s̄i = |p̄i|si with weights based on the state variables (the scaled sensitivities s̄i being
dimensionally consistent with the state variables). However, this choice of tolerances for the si may
be a poor one, and the user of idas can provide different values as an option.

2.5.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.12):
analytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). idas provides all the software hooks for implementing interfaces to automatic
differentiation (AD) or complex-step approximation; future versions will include a generic interface
to AD-generated functions. At the present time, besides the option for analytical sensitivity right-
hand sides (user-provided), idas can evaluate these quantities using various finite difference-based
approximations to evaluate the terms (∂F/∂y)si + (∂F/∂ẏ)ṡi and (∂F/∂pi), or using directional
derivatives to evaluate [(∂F/∂y)si + (∂F/∂ẏ)ṡi + (∂F/∂pi)]. As is typical for finite differences, the
proper choice of perturbations is a delicate matter. idas takes into account several problem-related
features: the relative DAE error tolerance rtol, the machine unit roundoff U , the scale factor p̄i, and
the weighted root-mean-square norm of the sensitivity vector si.

Using central finite differences as an example, the two terms (∂F/∂y)si + (∂F/∂ẏ)ṡi and ∂F/∂pi
in (2.12) can be evaluated either separately:

∂F

∂y
si +

∂F

∂ẏ
ṡi ≈

F (t, y + σysi, ẏ + σy ṡi, p)− F (t, y − σysi, ẏ − σy ṡi, p)
2σy

, (2.15)

∂F

∂pi
≈ F (t, y, ẏ, p+ σiei)− F (t, y, ẏ, p− σiei)

2σi
, (2.15’)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)
,

or simultaneously:

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p+ σei)− F (t, y − σsi, ẏ − σṡi, p− σei)

2σ
, (2.16)

σ = min(σi, σy) ,
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or by adaptively switching between (2.15)+(2.15’) and (2.16), depending on the relative size of the
two finite difference increments σi and σy. In the adaptive scheme, if ρ = max(σi/σy, σy/σi), we use
separate evaluations if ρ > ρmax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (σi, σy, σ) and switching between derivative
formulas have also been implemented for one-sided difference formulas. Forward finite differences can
be applied to (∂F/∂y)si + (∂F/∂ẏ)ṡi and ∂F

∂pi
separately, or the single directional derivative formula

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p+ σei)− F (t, y, ẏ, p)

σ

can be used. In idas, the default value of ρmax = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of ρmax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.5.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.4), idas does not carry
their sensitivities automatically. Instead, we provide a more general feature through which integrals
depending on both the states y of (2.2) and the state sensitivities si of (2.12) can be evaluated. In
other words, idas provides support for computing integrals of the form:

z̄(t) =

∫ t

t0

q̄(τ, y(τ), ẏ(τ), s1(τ), . . . , sNp
(τ), p) dτ .

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:

q̄i = qysi + qẏ ṡi + qpi , i = 1, . . . , Np ,

as integrands for z̄, where qy, qẏ, and qp are the partial derivatives of the integrand function q of
(2.10).

As with the quadrature variables z, the new variables z̄ are also excluded from any nonlinear solver
phase and “corrected” values z̄n are obtained through explicit formulas.

2.6 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with
respect to Ns parameters is roughly equivalent to solving an DAE system of size (1 + Ns)N . This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities si, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) =

∫ T

t0

g(t, y, p)dt , (2.17)

or, alternatively, the gradient dg/dp of the function g(t, y, p) at the final time t = T . The function g
must be smooth enough that ∂g/∂y and ∂g/∂p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [20].
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2.6.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange
multiplier λ, we form the augmented objective function

I(p) = G(p)−
∫ T

t0

λ∗F (t, y, ẏ, p)dt.

Since F (t, y, ẏ, p) = 0, the sensitivity of G with respect to p is

dG

dp
=
dI

dp
=

∫ T

t0

(gp + gyyp)dt−
∫ T

t0

λ∗(Fp + Fyyp + Fẏ ẏp)dt, (2.18)

where subscripts on functions such as F or g are used to denote partial derivatives. By integration
by parts, we have ∫ T

t0

λ∗Fẏ ẏpdt = (λ∗Fẏyp)|Tt0 −
∫ T

t0

(λ∗Fẏ)′ypdt,

where (· · · )′ denotes the t−derivative. Thus equation (2.18) becomes

dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt−
∫ T

t0

[−gy + λ∗Fy − (λ∗Fẏ)′] ypdt− (λ∗Fẏyp)|Tt0 . (2.19)

Now by requiring λ to satisfy
(λ∗Fẏ)′ − λ∗Fy = −gy, (2.20)

we obtain
dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt− (λ∗Fẏyp)|Tt0 . (2.21)

Note that yp at t = t0 is the sensitivity of the initial conditions with respect to p, which is easily ob-
tained. To find the initial conditions (at t = T ) for the adjoint system, we must take into consideration
the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

λ∗Fẏ|t=T = 0, (2.22)

yielding the sensitivity equation for dG/dp

dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt+ (λ∗Fẏyp)|t=t0 . (2.23)

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final
conditions in such cases, see [20].

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification
of the parameters p; this implies that, once the solution λ is found, the formula (2.21) can then be
used to find the gradient of G with respect to any of the parameters p. The second important remark
is that the adjoint system (2.20) is a terminal value problem which depends on the solution y(t) of
the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to idas during the backward integration phase of (2.20). The
approach adopted in idas, based on checkpointing, is described in §2.6.3 below.

2.6.2 Sensitivity of g(T, p)

Now let us consider the computation of dg/dp(T ). From dg/dp(T ) = (d/dT )(dG/dp) and equation
(2.21), we have

dg

dp
= (gp − λ∗Fp)(T )−

∫ T

t0

λ∗TFpdt+ (λ∗TFẏyp)|t=t0 −
d(λ∗Fẏyp)

dT
(2.24)
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where λT denotes ∂λ/∂T . For index-0 and index-1 DAEs, we obtain

d(λ∗Fẏyp)|t=T

dT
= 0,

while for a Hessenberg index-2 DAE system we have

d(λ∗Fẏyp)|t=T

dT
= −

d(gya(CB)−1f2p )

dt

∣∣∣∣∣
t=T

.

The corresponding adjoint equations are

(λ∗TFẏ)′ − λ∗TFy = 0. (2.25)

For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary
condition for this equation we write λ as λ(t, T ) because it depends on both t and T . Then

λ∗(T, T )Fẏ|t=T = 0.

Taking the total derivative, we obtain

(λt + λT )∗(T, T )Fẏ|t=T + λ∗(T, T )
dFẏ

dt
|t=T = 0.

Since λt is just λ̇, we have the boundary condition

(λ∗TFẏ)|t=T = −
[
λ∗(T, T )

dFẏ

dt
+ λ̇∗Fẏ

]
|t=T .

For the index-one DAE case, the above relation and (2.20) yield

(λ∗TFẏ)|t=T = [gy − λ∗Fy] |t=T . (2.26)

For the regular implicit ODE case, Fẏ is invertible; thus we have λ(T, T ) = 0, which leads to λT (T ) =

−λ̇(T ). As with the final conditions for λ(T ) in (2.20), the above selection for λT (T ) is not sufficient
for index-two Hessenberg DAEs (see [20] for details).

2.6.3 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
idas implements variable-step integration formulas, it is unlikely that the states will be available at
the desired time and so some form of interpolation is needed. The idas implementation being also
variable-order, it is possible that during the forward integration phase the order may be reduced as
low as first order, which means that there may be points in time where only y and ẏ are available.
These requirements therefore limit the choices for possible interpolation schemes. idas implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and ẏ that would need to be stored make this approach computationally intractable.
Thus, idas settles for a compromise between storage space and execution time by implementing a so-
called checkpointing scheme. At the cost of at most one additional forward integration, this approach
offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To begin
with, based on the problem size N and the available memory, the user decides on the number Nd

of data pairs (y, ẏ) if cubic Hermite interpolation is selected, or on the number Nd of y vectors in
the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of
interpolation. Then, during the first forward integration stage, after every Nd integration steps a
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with Nc checkpoints, including one at t0. During the
backward integration stage, the adjoint variables are integrated backwards from T to t0, going from
one checkpoint to the previous one. The backward integration from checkpoint i+ 1 to checkpoint i
is preceded by a forward integration from i to i+ 1 during which the Nd vectors y (and, if necessary
ẏ) are generated and stored in memory for interpolation1

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, Nc is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval
of integration. If no checkpoints are necessary (Nd is larger than the number of integration steps
taken in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as
one forward plus one backward integration. In addition, idas provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.17).

Finally, we note that the adjoint sensitivity module in idas provides the necessary infrastructure
to integrate backwards in time any DAE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.20) or (2.25), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.21). In particular, for DAE systems arising from semi-
discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.7 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the DAE problem (2.2) and some model output
functional2 g(y), the Hessian d2g/dp2 can be obtained in a forward sensitivity analysis setting as

d2g

dp2
=
(
gy ⊗ INp

)
ypp + yTp gyyyp ,

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. daspkadjoint). The variable-degree polynomial is more memory-efficient (it requires only
half of the memory storage of the cubic Hermite interpolation) and is more accurate.

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time t or parameters p.
Moreover, we only consider the case in which the dependency of the original DAE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [49].
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where ⊗ is the Kronecker product. The second-order sensitivities are solution of the matrix DAE
system:(
Fẏ ⊗ INp

)
· ẏpp +

(
Fy ⊗ INp

)
· ypp +

(
IN ⊗ ẏTp

)
· (Fẏẏ ẏp + Fyẏyp) +

(
IN ⊗ yTp

)
· (Fyẏ ẏp + Fyyyp) = 0

ypp(t0) =
∂2y0
∂p2

, ẏpp(t0) =
∂2ẏ0
∂p2

,

where yp denotes the first-order sensitivity matrix, the solution of Np systems (2.12), and ypp is a
third-order tensor. It is easy to see that, except for situations in which the number of parameters Np

is very small, the computational cost of this so-called forward-over-forward approach is exorbitant as
it requires the solution of Np +N2

p additional DAE systems of the same dimension as (2.2).
A much more efficient alternative is to compute Hessian-vector products using a so-called forward-

over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional for-
ward derivation to the gradient of (2.21) (or the equivalent one for a pointwise functional g(T, y(T ))).
With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gra-
dient with forward sensitivity analysis. However, Hessian-vector products can be cheaply computed
with one additional adjoint solve.

As an illustration3, consider the ODE problem

ẏ = f(t, y) , y(t0) = y0(p) ,

depending on some parameters p through the initial conditions only and consider the model functional
output G(p) =

∫ tf
t0
g(t, y) dt. It can be shown that the product between the Hessian of G (with respect

to the parameters p) and some vector u can be computed as

∂2G

∂p2
u =

[(
λT ⊗ INp

)
yppu+ yTp µ

]
t=t0

,

where λ and µ are solutions of

− µ̇ = fTy µ+
(
λT ⊗ In

)
fyys ; µ(tf ) = 0

− λ̇ = fTy λ+ gTy ; λ(tf ) = 0

ṡ = fys ; s(t0) = y0pu.

(2.27)

In the above equation, s = ypu is a linear combination of the columns of the sensitivity matrix yp.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.12).

Therefore (and this is also valid for the DAE case), the cost of computing the Hessian-vector
product is roughly that of two forward and two backward integrations of a system of DAEs of size
N . For more details, including the corresponding formulas for a pointwise model functional output,
see the work by Ozyurt and Barton [49] who discuss this problem for ODE initial value problems. As
far as we know, there is no published equivalent work on DAE problems. However, the derivations
given in [49] for ODE problems can be extended to DAEs with some careful consideration given to
the derivation of proper final conditions on the adjoint systems, following the ideas presented in [20].

To allow the foward-over-adjoint approach described above, idas provides support for:

• the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

• the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).

3The derivation for the general DAE case is too involved for the purposes of this discussion.



Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figures 3.1 and 3.2). The
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Figure 3.1: High-level diagram of the sundials suite.
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Figure 3.2: Directory structure of the sundials source tree.

following is a list of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems Mdy/dt =
f1(t, y) + f2(t, y) based on Runge-Kutta methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, klu, superlumt,
SuperLU DIST, hypre, petsc, Trilinos, and raja) users will need to download and compile those
packages independently.

3.2 IDAS organization

The idas package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the idas package is shown in Figure 3.3. The central integration
module, implemented in the files idas.h, idas impl.h, and idas.c, deals with the evaluation of
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Figure 3.3: Overall structure diagram of the idas package. Modules specific to idas begin with “IDA”
(idals, idanls, and idabbdpre), all other items correspond to generic sundials vector, matrix, and
solver modules (see Figure 3.1).

integration coefficients, estimation of local error, selection of stepsize and order, and interpolation to
user output points, among other issues.

idas utilizes generic linear and nonlinear solver modules defined by the sunlinsol API (see Chap-
ter 11) and sunnonlinsol API (see Chapter 12) respectively. As such, idas has no knowledge of
the method being used to solve the linear and nonlinear systems that arise in each time step. For
any given user problem, there exists a single nonlinear solver interface and, if necessary, one of the
linear system solver interfaces is specified, and invoked as needed during the integration. While sun-
dials includes a fixed-point nonlinear solver module, it is not currently supported in idas (note the
fixed-point module is listed in Figure 3.1 but not Figure 3.3).

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. idas provides two different strategies
for dealing with the correction stage for the sensitivity variables: IDA SIMULTANEOUS IDA STAGGERED

(see §2.5). The idas package includes an algorithm for the approximation of the sensitivity equations
residuals by difference quotients, but the user has the option of supplying these residual functions
directly.

The adjoint sensitivity module (file idaa.c) provides the infrastructure needed for the backward
integration of any system of DAEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

idas now has a single unified linear solver interface, idals, supporting both direct and iterative
linear solvers built using the generic sunlinsol API (see Chapter 11). These solvers may utilize a
sunmatrix object (see Chapter 10) for storing Jacobian information, or they may be matrix-free.
Since idas can operate on any valid sunlinsol implementation, the set of linear solver modules
available to idas will expand as new sunlinsol modules are developed.

For users employing dense or banded Jacobian matrices, idals includes algorithms for their ap-
proximation through difference quotients, but the user also has the option of supplying the Jacobian
(or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, idals includes an algorithm for the approx-
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imation by difference quotients of the product between the Jacobian matrix and a vector, Jv. Again,
the user has the option of providing routines for this operation, in two phases: setup (preprocessing
of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to
the difference-quotient approximation in the direct case, the references [13, 17], together with the
example and demonstration programs included with idas, offer considerable assistance in building
preconditioners.

idas’ linear solver interface consists of four primary routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.
The call list within the central idas module to each of the four associated functions is fixed, thus
allowing the central module to be completely independent of the linear system method.

idas also provides a preconditioner module, idabbdpre, for use with any of the Krylov iterative
linear solvers. It works in conjunction with nvector parallel and generates a preconditioner that
is a block-diagonal matrix with each block being a banded matrix.

All state information used by idas to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the idas package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the idas memory structure. The reentrancy of idas was motivated by
the situation where two or more problems are solved by intermixed calls to the package from one user
program.



Chapter 4

Using IDAS for IVP Solution

This chapter is concerned with the use of idas for the integration of DAEs in a C language setting.
The following sections treat the header files, the layout of the user’s main program, description of
the idas user-callable functions, and description of user-supplied functions. This usage is essentially
equivalent to using ida [39].

The sample programs described in the companion document [54] may also be helpful. Those codes
may be used as templates (with the removal of some lines involved in testing), and are included in
the idas package.

Users with applications written in Fortran should see Chapter ??, which describes the For-
tran/C interface module.

The user should be aware that not all sunlinsol and sunmatrix modules are compatible with
all nvector implementations. Details on compatibility are given in the documentation for each
sunmatrix module (Chapter 10) and each sunlinsol module (Chapter 11). For example, nvec-
tor parallel is not compatible with the dense, banded, or sparse sunmatrix types, or with the
corresponding dense, banded, or sparse sunlinsol modules. Please check Chapters 10 and 11 to
verify compatibility between these modules. In addition to that documentation, we note that the pre-
conditioner module idabbdpre can only be used with nvector parallel. It is not recommended
to use a threaded vector module with SuperLU MT unless it is the nvector openmp module, and
SuperLU MT is also compiled with OpenMP.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of idas, following the procedure described in Appendix
A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by idas. The relevant library files are

• libdir/libsundials idas.lib,

• libdir/libsundials nvec*.lib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/idas

• incdir/include/sundials

• incdir/include/nvector
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• incdir/include/sunmatrix

• incdir/include/sunlinsol

• incdir/include/sunnonlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where sundials was installed (see Appendix A).

Note that an application cannot link to both the ida and idas libraries because both contain
user-callable functions with the same names (to ensure that idas is backward compatible with ida).
Therefore, applications that contain both DAE problems and DAEs with sensitivity analysis, should
use idas.

4.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
sundials.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the sundials solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials
uses the RCONST macro internally to declare all of its floating-point constants.

Additionally, sundials defines several macros for common mathematical functions e.g., fabs,
sqrt, exp, etc. in sundials math.h. The macros are prefixed with SUNR and expand to the appro-
priate C function based on the realtype. For example, the macro SUNRabs expands to the C function
fabs when realtype is double, fabsf when realtype is float, and fabsl when realtype is long

double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical
function macros is precision-independent except for any calls to precision-specific library functions.
Our example programs use realtype, RCONST, and the SUNR macros. Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype) and call the appropriate math library functions directly. Thus, a previously existing
piece of ANSI C code can use sundials without modifying the code to use realtype, RCONST, or the
SUNR macros so long as the sundials libraries use the correct precision (for details see §A.1.2).
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4.2.2 Integer types used for indexing

The type sunindextype is used for indexing array entries in sundials modules (e.g., vectors lengths
and matrix sizes) as well as for storing the total problem size. During configuration sunindextype

may be selected to be either a 32- or 64-bit signed integer with the default being 64-bit. See §A.1.2
for the configuration option to select the desired size of sunindextype. When using a 32-bit integer
the total problem size is limited to 231− 1 and with 64-bit integers the limit is 263− 1. For users with
problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype.

A user program which uses sunindextype to handle indices will work with both index storage types
except for any calls to index storage-specific external libraries. Our C and C++ example programs
use sunindextype. Users can, however, use any compatible type (e.g., int, long int, int32 t,
int64 t, or long long int) in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture. Thus, a previously existing piece of ANSI C code can use
sundials without modifying the code to use sunindextype, so long as the sundials libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• idas/idas.h, the header file for idas, which defines the several types and various constants,
and includes function prototypes. This includes the header file for idals, ida/ida ls.h.

Note that idas.h includes sundials types.h, which defines the types realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an nvector implementation header file, of the form
nvector/nvector ***.h. See Chapter 9 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N Vector data type.

If using a non-default nonlinear solver module, or when interacting with a sunnonlinsol module
directly, the calling program must also include a sunnonlinsol implementation header file, of the form
sunnonlinsol/sunnonlinsol ***.h where *** is the name of the nonlinear solver module (see Chap-
ter 12 for more information). This file in turn includes the header file sundials nonlinearsolver.h

which defines the abstract SUNNonlinearSolver data type.
If using a nonlinear solver that requires the solution of a linear system of the form (2.5) (e.g.,

the default Newton iteration), a linear solver module header file is also required. The header files
corresponding to the various sundials-provided linear solver modules available for use with idas are:

• Direct linear solvers:

– sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, sun-
linsol dense;

– sunlinsol/sunlinsol band.h, which is used with the banded linear solver module, sun-
linsol band;

– sunlinsol/sunlinsol lapackdense.h, which is used with the LAPACK dense linear solver
module, sunlinsol lapackdense;

– sunlinsol/sunlinsol lapackband.h, which is used with the LAPACK banded linear
solver module, sunlinsol lapackband;

– sunlinsol/sunlinsol klu.h, which is used with the klu sparse linear solver module,
sunlinsol klu;

– sunlinsol/sunlinsol superlumt.h, which is used with the superlumt sparse linear
solver module, sunlinsol superlumt;
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• Iterative linear solvers:

– sunlinsol/sunlinsol spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, sunlinsol spgmr;

– sunlinsol/sunlinsol spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, sunlinsol spfgmr;

– sunlinsol/sunlinsol spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, sunlinsol spbcgs;

– sunlinsol/sunlinsol sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, sunlinsol sptfqmr;

– sunlinsol/sunlinsol pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, sunlinsol pcg;

The header files for the sunlinsol dense and sunlinsol lapackdense linear solver modules
include the file sunmatrix/sunmatrix dense.h, which defines the sunmatrix dense matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the sunlinsol band and sunlinsol lapackband linear solver modules in-
clude the file sunmatrix/sunmatrix band.h, which defines the sunmatrix band matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the sunlinsol klu and sunlinsol superlumt sparse linear solvers include
the file sunmatrix/sunmatrix sparse.h, which defines the sunmatrix sparse matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials iterative.h,
which enumerates the kind of preconditioning, and (for the spgmr and spfgmr solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
idasFoodWeb kry p example (see [54]), preconditioning is done with a block-diagonal matrix. For this,
even though the sunlinsol spgmr linear solver is used, the header sundials/sundials dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE
IVP. Most of the steps are independent of the nvector, sunmatrix, sunlinsol, and sunnonlinsol
implementations used. For the steps that are not, refer to Chapter 9, 10, 11, and 12 for the specific
name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI Init to initialize MPI if used, or set num threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.

This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vectors of initial values

To set the vectors y0 and yp0 to initial values for y and ẏ, use the appropriate functions defined
by the particular nvector implementation.

For native sundials vector implementations (except the cuda and raja-based ones), use a call
of the form y0 = N VMake ***(..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =
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N VNew ***(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N VGetArrayPointer(y0). See §9.3-9.6 for details.

For the hypre and petsc vector wrappers, first create and initialize the underlying vector and
then create an nvector wrapper with a call of the form y0 = N VMake ***(yvec), where yvec

is a hypre or petsc vector. Note that calls like N VNew ***(...) and N VGetArrayPointer(...)

are not available for these vector wrappers. See §9.7 and §9.8 for details.

If using either the cuda- or raja-based vector implementations use a call of the form y0 =

N VMake ***(..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N VNew ***(...),
and then set its elements by accessing the underlying data where it is located with a call of the
form N VGetDeviceArrayPointer *** or N VGetHostArrayPointer ***. Note that the vector
class will allocate memory on both the host and device when instantiated. See §9.9-9.11 for
details.

Set the vector yp0 of initial conditions for ẏ similarly.

4. Create idas object

Call ida mem = IDACreate() to create the idas memory block. IDACreate returns a pointer to
the idas memory structure. See §4.5.1 for details. This void * pointer must then be passed as
the first argument to all subsequent idas function calls.

5. Initialize idas solver

Call IDAInit(...) to provide required problem specifications (residual function, initial time, and
initial conditions), allocate internal memory for idas, and initialize idas. IDAInit returns an
error flag to indicate success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call IDASStolerances(...) or IDASVtolerances(...) to specify, respectively, a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances. Alternatively, call IDAWFtolerances to specify a function which sets directly the
weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must
be created by calling the appropriate constructor function defined by the particular sunmatrix
implementation.

For the sundials-supplied sunmatrix implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);

or

SUNMatrix J = SUNDenseMatrix(...);

or

SUNMatrix J = SUNSparseMatrix(...);

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

8. Create linear solver object

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
the desired linear solver object must be created by calling the appropriate constructor function
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defined by the particular sunlinsol implementation.

For any of the sundials-supplied sunlinsol implementations, the linear solver object may be
created using a call of the form

SUNLinearSolver LS = SUNLinSol *(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.3 and
Chapter 11.

9. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each sunlinsol module in Chapter 11 for details.

10. Attach linear solver module

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
initialize the idals linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the following call (for details see §4.5.3):

ier = IDASetLinearSolver(...);

11. Set optional inputs

Optionally, call IDASet* functions to change from their default values any optional inputs that
control the behavior of idas. See §4.5.8.1 and §4.5.8 for details.

12. Create nonlinear solver object (optional)

If using a non-default nonlinear solver (see §4.5.4), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular sunnonlinsol imple-
mentation (e.g., NLS = SUNNonlinSol ***(...); where *** is the name of the nonlinear solver
(see Chapter 12 for details).

13. Attach nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the
nonlinear solver object by calling ier = IDASetNonlinearSolver(ida mem, NLS); (see §4.5.4 for
details).

14. Set nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after IDAInit if using the default
nonlinear solver or after attaching a new nonlinear solver to idas, otherwise the optional inputs
will be overridden by idas defaults. See Chapter 12 for more information on optional inputs.

15. Correct initial values

Optionally, call IDACalcIC to correct the initial values y0 and yp0 passed to IDAInit. See §4.5.5.
Also see §4.5.8.3 for relevant optional input calls.

16. Specify rootfinding problem

Optionally, call IDARootInit to initialize a rootfinding problem to be solved during the integration
of the DAE system. See §4.5.6 for details, and see §4.5.8.4 for relevant optional input calls.

17. Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida mem, tout, &tret, yret,

ypret, itask). Here itask specifies the return mode. The vector yret (which can be the same
as the vector y0 above) will contain y(t), while the vector ypret (which can be the same as the
vector yp0 above) will contain ẏ(t). See §4.5.7 for details.
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18. Get optional outputs

Call IDA*Get* functions to obtain optional output. See §4.5.10 for details.

19. Deallocate memory for solution vectors

Upon completion of the integration, deallocate memory for the vectors yret and ypret (or y and
yp) by calling the appropriate destructor function defined by the nvector implementation:

N VDestroy(yret);

and similarly for ypret.

20. Free solver memory

IDAFree(&ida mem) to free the memory allocated for idas.

21. Free nonlinear solver memory (optional)

If a non-default nonlinear solver was used, then call SUNNonlinSolFree(NLS) to free any memory
allocated for the sunnonlinsol object.

22. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

23. Finalize MPI, if used

Call MPI Finalize() to terminate MPI.

sundials provides some linear solvers only as a means for users to get problems running and not
as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50, 000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as sunlinsol modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 11 the sundials
packages operate on generic sunlinsol objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: sundials linear solver interfaces and vector implementations that can be used for each.
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LapackDense X X X X
LapackBand X X X X

klu X X X X
superlumt X X X X

spgmr X X X X X X X X X
spfgmr X X X X X X X X X
spbcgs X X X X X X X X X

sptfqmr X X X X X X X X X
pcg X X X X X X X X X

User Supp. X X X X X X X X X
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4.5 User-callable functions

This section describes the idas functions that are called by the user to set up and solve a DAE. Some of
these are required. However, starting with §4.5.8, the functions listed involve optional inputs/outputs
or restarting, and those paragraphs can be skipped for a casual use of idas. In any case, refer to §4.4
for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.8.1).

4.5.1 IDAS initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the DAE solution is complete, as it frees the idas memory block created and allocated by the first
two calls.

IDACreate

Call ida mem = IDACreate();

Description The function IDACreate instantiates an idas solver object.

Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created idas memory block (of
type void *). Otherwise it returns NULL.

F2003 Name FIDACreate

IDAInit

Call flag = IDAInit(ida mem, res, t0, y0, yp0);

Description The function IDAInit provides required problem and solution specifications, allocates
internal memory, and initializes idas.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

res (IDAResFn) is the C function which computes the residual function F in the
DAE. This function has the form res(t, yy, yp, resval, user data). For
full details see §4.6.1.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT An input argument to IDAInit has an illegal value.

Notes If an error occurred, IDAInit also sends an error message to the error handler function.

F2003 Name FIDAInit
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IDAFree

Call IDAFree(&ida mem);

Description The function IDAFree frees the pointer allocated by a previous call to IDACreate.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAFree has no return value.

F2003 Name FIDAFree

4.5.2 IDAS tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to IDAInit.

IDASStolerances

Call flag = IDASStolerances(ida mem, reltol, abstol);

Description The function IDASStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT One of the input tolerances was negative.

F2003 Name FIDASStolerances

IDASVtolerances

Call flag = IDASVtolerances(ida mem, reltol, abstol);

Description The function IDASVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

F2003 Name FIDASVtolerances
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IDAWFtolerances

Call flag = IDAWFtolerances(ida mem, efun);

Description The function IDAWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.7).

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

efun (IDAEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAWFtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

F2003 Name FIDAWFtolerances

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol=10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 10−15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
idasRoberts dns in the idas package, and the discussion of it in the idas Examples document [54].
In that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are a sort of accumulation of
those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the actual
desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol= 10−6. But
in any case, it is a good idea to do a few experiments with the tolerances to see how the computed
solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in yret returned by idas, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s residual routine res should never change a negative value in the solution vector yy
to a non-negative value, as a ”solution” to this problem. This can cause instability. If the res routine



4.5 User-callable functions 47

cannot tolerate a zero or negative value (e.g., because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input yy vector) for the purposes of computing F (t, y, ẏ).

(4) idas provides the option of enforcing positivity or non-negativity on components. Also, such
constraints can be enforced by use of the recoverable error return feature in the user-supplied residual
function. However, because these options involve some extra overhead cost, they should only be
exercised if the use of absolute tolerances to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.5)
(e.g., the default Newton iteration, then solution of these linear systems is handled with the idals
linear solver interface. This interface supports all valid sunlinsol modules. Here, matrix-based
sunlinsol modules utilize sunmatrix objects to store the Jacobian matrix J = ∂F/∂y + α∂F/∂ẏ
and factorizations used throughout the solution process. Conversely, matrix-free sunlinsol modules
instead use iterative methods to solve the linear systems of equations, and only require the action of
the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. The exceptions to this rule are spfgmr that supports
right preconditioning only and pcg that performs symmetric preconditioning. However, in idas only
left preconditioning is supported. For the specification of a preconditioner, see the iterative linear
solver sections in §4.5.8 and §4.6. A preconditioner matrix P must approximate the Jacobian J , at
least crudely.

To specify a generic linear solver to idas, after the call to IDACreate but before any calls to
IDASolve, the user’s program must create the appropriate sunlinsol object and call the function
IDASetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the sundials-packaged sunlinsol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol Dense, SUNLinSol Band,
SUNLinSol LapackDense, SUNLinSol LapackBand, SUNLinSol KLU, SUNLinSol SuperLUMT,
SUNLinSol SPGMR, SUNLinSol SPFGMR, SUNLinSol SPBCGS, SUNLinSol SPTFQMR, and SUNLinSol PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific sunmatrix or sunlinsol module in question, as described in Chapters
10 and 11.

Once this solver object has been constructed, the user should attach it to idas via a call to
IDASetLinearSolver. The first argument passed to this function is the idas memory pointer returned
by IDACreate; the second argument is the desired sunlinsol object to use for solving systems. The
third argument is an optional sunmatrix object to accompany matrix-based sunlinsol inputs (for
matrix-free linear solvers, the third argument should be NULL). A call to this function initializes the
idals linear solver interface, linking it to the main idas integrator, and allows the user to specify
additional parameters and routines pertinent to their choice of linear solver.

IDASetLinearSolver

Call flag = IDASetLinearSolver(ida mem, LS, J);

Description The function IDASetLinearSolver attaches a generic sunlinsol object LS and corre-
sponding template Jacobian sunmatrix object J (if applicable) to idas, initializing the
idals linear solver interface.

Arguments ida mem (void *) pointer to the idas memory block.

LS (SUNLinearSolver) sunlinsol object to use for solving linear systems of the
form (2.5.
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J (SUNMatrix) sunmatrix object for used as a template for the Jacobian (or
NULL if not applicable).

Return value The return value flag (of type int) is one of

IDALS SUCCESS The idals initialization was successful.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS ILL INPUT The idals interface is not compatible with the LS or J input objects
or is incompatible with the current nvector module.

IDALS SUNLS FAIL A call to the LS object failed.

IDALS MEM FAIL A memory allocation request failed.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the sunmatrix object
(e.g., for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular sunmatrix type in Chapter
10 for further information).

The previous routines IDADlsSetLinearSolver and IDASpilsSetLinearSolver are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

F2003 Name FIDASetLinearSolver

4.5.4 Nonlinear solver interface function

By default idas uses the sunnonlinsol implementation of Newton’s method defined by the sunnon-
linsol newton module (see §12.3). To specify a different nonlinear solver in idas, the user’s program
must create a sunnonlinsol object by calling the appropriate constructor routine. The user must
then attach the sunnonlinsol object to idas by calling IDASetNonlinearSolver, as documented
below.

When changing the nonlinear solver in idas, IDASetNonlinearSolver must be called after IDAInit.
If any calls to IDASolve have been made, then idas will need to be reinitialized by calling IDAReInit

to ensure that the nonlinear solver is initialized correctly before any subsequent calls to IDASolve.

The first argument passed to the routine IDASetNonlinearSolver is the idas memory pointer
returned by IDACreate and the second argument is the sunnonlinsol object to use for solving the
nonlinear system 2.4. A call to this function attaches the nonlinear solver to the main idas integrator.
We note that at present, the sunnonlinsol object must be of type SUNNONLINEARSOLVER ROOTFIND.

IDASetNonlinearSolver

Call flag = IDASetNonlinearSolver(ida mem, NLS);

Description The function IDASetNonLinearSolver attaches a sunnonlinsol object (NLS) to idas.

Arguments ida mem (void *) pointer to the idas memory block.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA SUCCESS The nonlinear solver was successfully attached.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The sunnonlinsol object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.
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Notes When forward sensitivity analysis capabilities are enabled and the IDA STAGGERED cor-
rector method is used this function sets the nonlinear solver method for correcting state
variables (see §5.2.3 for more details).

F2003 Name FIDASetNonlinearSolver

4.5.5 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for certain index-one problems
including a class of systems of semi-implicit form. (See §2.1 and Ref. [15].) It uses Newton iteration
combined with a linesearch algorithm. Calling IDACalcIC is optional. It is only necessary when
the initial conditions do not satisfy the given system. Thus if y0 and yp0 are known to satisfy
F (t0, y0, ẏ0) = 0, then a call to IDACalcIC is generally not necessary.

A call to the function IDACalcIC must be preceded by successful calls to IDACreate and IDAInit

(or IDAReInit), and by a successful call to the linear system solver specification function. The call to
IDACalcIC should precede the call(s) to IDASolve for the given problem.

IDACalcIC

Call flag = IDACalcIC(ida mem, icopt, tout1);

Description The function IDACalcIC corrects the initial values y0 and yp0 at time t0.

Arguments ida mem (void *) pointer to the idas memory block.

icopt (int) is one of the following two options for the initial condition calculation.

icopt=IDA YA YDP INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of ẏ, given the differential components
of y. This option requires that the N Vector id was set through IDASetId,
specifying the differential and algebraic components.

icopt=IDA Y INIT directs IDACalcIC to compute all components of y, given
ẏ. In this case, id is not required.

tout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolve). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA MEM NULL The argument ida mem was NULL.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT One of the input arguments was illegal.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable man-
ner.

IDA BAD EWT Some component of the error weight vector is zero (illegal), either
for the input value of y0 or a corrected value.

IDA FIRST RES FAIL The user’s residual function returned a recoverable error flag on
the first call, but IDACalcIC was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

IDA NO RECOVERY The user’s residual function, or the linear solver’s setup or solve
function had a recoverable error, but IDACalcIC was unable to
recover.

IDA CONSTR FAIL IDACalcIC was unable to find a solution satisfying the inequality
constraints.
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IDA LINESEARCH FAIL The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm, and within the
allowed number of backtracks.

IDA CONV FAIL IDACalcIC failed to get convergence of the Newton iterations.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcIC failures.

Note that IDACalcIC will correct the values of y(t0) and ẏ(t0) which were specified
in the previous call to IDAInit or IDAReInit. To obtain the corrected values, call
IDAGetconsistentIC (see §4.5.10.3).

F2003 Name FIDACalcIC

4.5.6 Rootfinding initialization function

While integrating the IVP, idas has the capability of finding the roots of a set of user-defined functions.
To activate the rootfinding algorithm, call the following function. This is normally called only once,
prior to the first call to IDASolve, but if the rootfinding problem is to be changed during the solution,
IDARootInit can also be called prior to a continuation call to IDASolve.

IDARootInit

Call flag = IDARootInit(ida mem, nrtfn, g);

Description The function IDARootInit specifies that the roots of a set of functions gi(t, y, ẏ) are to
be found while the IVP is being solved.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

nrtfn (int) is the number of root functions gi.

g (IDARootFn) is the C function which defines the nrtfn functions gi(t, y, ẏ)
whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

IDA SUCCESS The call to IDARootInit was successful.

IDA MEM NULL The ida mem argument was NULL.

IDA MEM FAIL A memory allocation failed.

IDA ILL INPUT The function g is NULL, but nrtfn> 0.

Notes If a new IVP is to be solved with a call to IDAReInit, where the new IVP has no
rootfinding problem but the prior one did, then call IDARootInit with nrtfn= 0.

F2003 Name FIDARootInit

4.5.7 IDAS solver function

This is the central step in the solution process, the call to perform the integration of the DAE. One
of the input arguments (itask) specifies one of two modes as to where idas is to return a solution.
But these modes are modified if the user has set a stop time (with IDASetStopTime) or requested
rootfinding.

IDASolve

Call flag = IDASolve(ida mem, tout, &tret, yret, ypret, itask);

Description The function IDASolve integrates the DAE over an interval in t.

Arguments ida mem (void *) pointer to the idas memory block.

tout (realtype) the next time at which a computed solution is desired.

tret (realtype) the time reached by the solver (output).
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yret (N Vector) the computed solution vector y.

ypret (N Vector) the computed solution vector ẏ.

itask (int) a flag indicating the job of the solver for the next user step. The
IDA NORMAL task is to have the solver take internal steps until it has reached or
just passed the user specified tout parameter. The solver then interpolates in
order to return approximate values of y(tout) and ẏ(tout). The IDA ONE STEP

option tells the solver to just take one internal step and return the solution at
the point reached by that step.

Return value IDASolve returns vectors yret and ypret and a corresponding independent variable
value t = tret, such that (yret, ypret) are the computed values of (y(t), ẏ(t)).

In IDA NORMAL mode with no errors, tret will be equal to tout and yret = y(tout),
ypret = ẏ(tout).

The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA TSTOP RETURN IDASolve succeeded by reaching the stop point specified through
the optional input function IDASetStopTime. See §4.5.8.1 for more
information.

IDA ROOT RETURN IDASolve succeeded and found one or more roots. In this case,
tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which gi were found to have a root. See §4.5.10.4 for more
information.

IDA MEM NULL The ida mem argument was NULL.

IDA ILL INPUT One of the inputs to IDASolve was illegal, or some other input
to the solver was either illegal or missing. The latter category
includes the following situations: (a) The tolerances have not been
set. (b) A component of the error weight vector became zero during
internal time-stepping. (c) The linear solver initialization function
(called by the user after calling IDACreate) failed to set the linear
solver-specific lsolve field in ida mem. (d) A root of one of the
root functions was found both at a point t and also very near t. In
any case, the user should see the printed error message for details.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAIL Error test failures occurred too many times (MXNEF = 10) during
one internal time step or occurred with |h| = hmin.

IDA CONV FAIL Convergence test failures occurred too many times (MXNCF = 10)
during one internal time step or occurred with |h| = hmin.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA CONSTR FAIL The inequality constraints were violated and the solver was unable
to recover.

IDA REP RES ERR The user’s residual function repeatedly returned a recoverable error
flag, but the solver was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

IDA RTFUNC FAIL The rootfinding function failed.
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Notes The vector yret can occupy the same space as the vector y0 of initial conditions that
was passed to IDAInit, and the vector ypret can occupy the same space as yp0.

In the IDA ONE STEP mode, tout is used on the first call only, and only to get the
direction and rough scale of the independent variable.

If a stop time is enabled (through a call to IDASetStopTime), then IDASolve returns
the solution at tstop. Once the integrator returns at a stop time, any future testing for
tstop is disabled (and can be reenabled only though a new call to IDASetStopTime).

All failure return values are negative and therefore a test flag < 0 will trap all IDASolve
failures.

On any error return in which one or more internal steps were taken by IDASolve, the
returned values of tret, yret, and ypret correspond to the farthest point reached in
the integration. On all other error returns, these values are left unchanged from the
previous IDASolve return.

F2003 Name FIDASolve

4.5.8 Optional input functions

There are numerous optional input parameters that control the behavior of the idas solver. idas
provides functions that can be used to change these optional input parameters from their default
values. Table 4.2 lists all optional input functions in idas which are then described in detail in the
remainder of this section. For the most casual use of idas, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions also send an error message
to the error handler function. All error return values are negative, so the test flag < 0 will catch all
errors. Finally, a call to a IDASet*** function can be made from the user’s calling program at any
time and, if successful, takes effect immediately.

4.5.8.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if the user’s program calls either
IDASetErrFile or IDASetErrHandlerFn, then that call should appear first, in order to take effect for
any later error message.

IDASetErrFile

Call flag = IDASetErrFile(ida mem, errfp);

Description The function IDASetErrFile specifies the pointer to the file where all idas messages
should be directed when the default idas error handler function is used.

Arguments ida mem (void *) pointer to the idas memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the idas memory pointer is NULL). This use of IDASetErrFile is strongly dis-
couraged.

If IDASetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.

F2003 Name FIDASetErrFile



4.5 User-callable functions 53

Table 4.2: Optional inputs for idas and idals

Optional input Function name Default
IDAS main solver

Pointer to an error file IDASetErrFile stderr

Error handler function IDASetErrHandlerFn internal fn.
User data IDASetUserData NULL

Maximum order for BDF method IDASetMaxOrd 5
Maximum no. of internal steps before tout IDASetMaxNumSteps 500
Initial step size IDASetInitStep estimated
Maximum absolute step size IDASetMaxStep ∞
Value of tstop IDASetStopTime ∞
Maximum no. of error test failures IDASetMaxErrTestFails 10
Maximum no. of nonlinear iterations IDASetMaxNonlinIters 4
Maximum no. of convergence failures IDASetMaxConvFails 10
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef 0.33
Residual function for nonlinear system evaluations IDASetNlsResFn NULL

Suppress alg. vars. from error test IDASetSuppressAlg SUNFALSE

Variable types (differential/algebraic) IDASetId NULL

Inequality constraints on solution IDASetConstraints NULL

Direction of zero-crossing IDASetRootDirection both
Disable rootfinding warnings IDASetNoInactiveRootWarn none

IDAS initial conditions calculation
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC 0.0033
Maximum no. of steps IDASetMaxNumStepsIC 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC 4
Maximum no. of Newton iterations IDASetMaxNumItersIC 10
Max. linesearch backtracks per Newton iter. IDASetMaxBacksIC 100
Turn off linesearch IDASetLineSearchOffIC SUNFALSE

Lower bound on Newton step IDASetStepToleranceIC uround2/3

IDALS linear solver interface
Jacobian function IDASetJacFn DQ
Enable or disable linear solution scaling IDASetLinearSolutionScaling on
Jacobian-times-vector function IDASetJacTimes NULL, DQ
Preconditioner functions IDASetPreconditioner NULL, NULL
Ratio between linear and nonlinear tolerances IDASetEpsLin 0.05
Increment factor used in DQ Jv approx. IDASetIncrementFactor 1.0
Jacobian-times-vector DQ Res function IDASetJacTimesResFn NULL
Newton linear solve tolerance conversion factor IDASetLSNormFactor vector length
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IDASetErrHandlerFn

Call flag = IDASetErrHandlerFn(ida mem, ehfun, eh data);

Description The function IDASetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments ida mem (void *) pointer to the idas memory block.

ehfun (IDAErrHandlerFn) is the user’s C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

IDA SUCCESS The function ehfun and data pointer eh data have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Error messages indicating that the idas solver memory is NULL will always be directed
to stderr.
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IDASetUserData

Call flag = IDASetUserData(ida mem, user data);

Description The function IDASetUserData specifies the user data block user data and attaches it
to the main idas memory block.

Arguments ida mem (void *) pointer to the idas memory block.

user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user linear solver or preconditioner functions, the call to!

IDASetUserData must be made before the call to specify the linear solver.

F2003 Name FIDASetUserData

IDASetMaxOrd

Call flag = IDASetMaxOrd(ida mem, maxord);

Description The function IDASetMaxOrd specifies the maximum order of the linear multistep method.

Arguments ida mem (void *) pointer to the idas memory block.

maxord (int) value of the maximum method order. This must be positive.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The input value maxord is ≤ 0, or larger than its previous value.

Notes The default value is 5. If the input value exceeds 5, the value 5 will be used. Since
maxord affects the memory requirements for the internal idas memory block, its value
cannot be increased past its previous value.

F2003 Name FIDASetMaxOrd
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IDASetMaxNumSteps

Call flag = IDASetMaxNumSteps(ida mem, mxsteps);

Description The function IDASetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments ida mem (void *) pointer to the idas memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Passing mxsteps = 0 results in idas using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).
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IDASetInitStep

Call flag = IDASetInitStep(ida mem, hin);

Description The function IDASetInitStep specifies the initial step size.

Arguments ida mem (void *) pointer to the idas memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to have
idas use the default value.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes By default, idas estimates the initial step as the solution of ‖hẏ‖WRMS = 1/2, with an
added restriction that |h| ≤ .001|tout - t0|.
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IDASetMaxStep

Call flag = IDASetMaxStep(ida mem, hmax);

Description The function IDASetMaxStep specifies the maximum absolute value of the step size.

Arguments ida mem (void *) pointer to the idas memory block.

hmax (realtype) maximum absolute value of the step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT Either hmax is not positive or it is smaller than the minimum allowable
step.

Notes Pass hmax= 0 to obtain the default value ∞.

F2003 Name FIDASetMaxStep
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IDASetStopTime

Call flag = IDASetStopTime(ida mem, tstop);

Description The function IDASetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments ida mem (void *) pointer to the idas memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The value of tstop is not beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and
can be reenabled only though a new call to IDASetStopTime).

F2003 Name FIDASetStopTime

IDASetMaxErrTestFails

Call flag = IDASetMaxErrTestFails(ida mem, maxnef);

Description The function IDASetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments ida mem (void *) pointer to the idas memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 10.
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IDASetMaxNonlinIters

Call flag = IDASetMaxNonlinIters(ida mem, maxcor);

Description The function IDASetMaxNonlinIters specifies the maximum number of nonlinear solver
iterations at one step.

Arguments ida mem (void *) pointer to the idas memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed on one step
(> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA MEM FAIL The sunnonlinsol module is NULL.

Notes The default value is 4.

F2003 Name FIDASetMaxNonlinIters
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IDASetMaxConvFails

Call flag = IDASetMaxConvFails(ida mem, maxncf);

Description The function IDASetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures at one step.

Arguments ida mem (void *) pointer to the idas memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures on
one step (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 10.
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IDASetNonlinConvCoef

Call flag = IDASetNonlinConvCoef(ida mem, nlscoef);

Description The function IDASetNonlinConvCoef specifies the safety factor in the nonlinear con-
vergence test; see Chapter 2, Eq. (2.8).

Arguments ida mem (void *) pointer to the idas memory block.

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The value of nlscoef is <= 0.0.

Notes The default value is 0.33.
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IDASetNlsResFn

Call flag = IDASetNlsResFn(ida mem, res);

Description The function IDASetNlsResFn specifies an alternative residual function for use in non-
linear system function evaluations.

Arguments ida mem (void *) pointer to the ida memory block.

res (IDAResFn) is the alternative C function which computes the DAE residual
function F (for full details see §4.6.1).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional function has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default is to use the residual function provided to IDAInit in nonlinear system
function evaluations. If the input residual function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after IDASetNonlinearSolver.

When doing forward sensitivity analysis with the simultaneous solver strategy and a non-
default nonlinear solver, this function must be called after IDASetNonlinearSolverSensSim.

F2003 Name FIDASetNlsResFn
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IDASetSuppressAlg

Call flag = IDASetSuppressAlg(ida mem, suppressalg);

Description The function IDASetSuppressAlg indicates whether or not to suppress algebraic vari-
ables in the local error test.

Arguments ida mem (void *) pointer to the idas memory block.

suppressalg (booleantype) indicates whether to suppress (SUNTRUE) or not (SUNFALSE)
the algebraic variables in the local error test.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is SUNFALSE.

If suppressalg=SUNTRUE is selected, then the id vector must be set (through IDASetId)
to specify the algebraic components.

In general, the use of this option (with suppressalg = SUNTRUE) is discouraged when
solving DAE systems of index 1, whereas it is generally encouraged for systems of index
2 or more. See pp. 146-147 of Ref. [11] for more on this issue.
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IDASetId

Call flag = IDASetId(ida mem, id);

Description The function IDASetId specifies algebraic/differential components in the y vector.

Arguments ida mem (void *) pointer to the idas memory block.

id (N Vector) state vector. A value of 1.0 indicates a differential variable, while
0.0 indicates an algebraic variable.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The vector id is required if the algebraic variables are to be suppressed from the lo-
cal error test (see IDASetSuppressAlg) or if IDACalcIC is to be called with icopt =
IDA YA YDP INIT (see §4.5.5).
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IDASetConstraints

Call flag = IDASetConstraints(ida mem, constraints);

Description The function IDASetConstraints specifies a vector defining inequality constraints for
each component of the solution vector y.

Arguments ida mem (void *) pointer to the idas memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on yi.

1.0 then yi will be constrained to be yi ≥ 0.0.

−1.0 then yi will be constrained to be yi ≤ 0.0.

2.0 then yi will be constrained to be yi > 0.0.

−2.0 then yi will be constrained to be yi < 0.0.

Return value The return value flag (of type int) is one of
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IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The constraints vector contains illegal values or the simultaneous cor-
rector option has been selected when doing forward sensitivity analysis.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return.

Constraint checking when doing forward sensitivity analysis with the simultaneous cor-
rector option is currently disallowed and will result in an illegal input return.
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4.5.8.2 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to idas is provided in §2.1. We
group the user-callable routines into four categories: general routines concerning the overall idals
linear solver interface, optional inputs for matrix-based linear solvers, optional inputs for matrix-free
linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and
matrix-free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.

When using matrix-based linear solver modules, the idals solver interface needs a function to com-
pute an approximation to the Jacobian matrix J(t, y, ẏ). This function must be of type IDALsJacFn.
The user can supply a Jacobian function, or if using a dense or banded matrix J can use the de-
fault internal difference quotient approximation that comes with the idals interface. To specify a
user-supplied Jacobian function jac, idals provides the function IDASetJacFn. The idals interface
passes the pointer user data to the Jacobian function. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied Jacobian
function, without using global data in the program. The pointer user data may be specified through
IDASetUserData.

IDASetJacFn

Call flag = IDASetJacFn(ida mem, jac);

Description The function IDASetJacFn specifies the Jacobian approximation function to be used for
a matrix-based solver within the idals interface.

Arguments ida mem (void *) pointer to the idas memory block.

jac (IDALsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver interface has not been initialized.

Notes This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.

By default, idals uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using other matrix types.

The function type IDALsJacFn is described in §4.6.5.

The previous routine IDADlsSetJacFn is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacFn
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When using a matrix-based linear solver the matrix information will be updated infrequently to reduce
matrix construction and, with direct solvers, factorization costs. As a result the value of α may not
be current and a scaling factor is applied to the solution of the linear system to account for the lagged
value of α. See §11.4.1 for more details. The function IDASetLinearSolutionScaling can be used
to disable this scaling when necessary, e.g., when providing a custom linear solver that updates the
matrix using the current α as part of the solve.

IDASetLinearSolutionScaling

Call flag = IDASetLinearSolutionScaling(ida mem, onoff);

Description The function IDASetLinearSolutionScaling enables or disables scaling the linear sys-
tem solution to account for a change in α in the linear system. For more details see
§11.4.1.

Arguments ida mem (void *) pointer to the idas memory block.

onoff (booleantype) flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return value The return value flag (of type int) is one of

IDALS SUCCESS The flag value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver interface has not been initialized.

IDALS ILL INPUT The attached linear solver is not matrix-based.

Notes This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.

By default scaling is enabled with matrix-based linear solvers.
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When using matrix-free linear solver modules, the idals solver interface requires a function to compute
an approximation to the product between the Jacobian matrix J(t, y) and a vector v. The user can
supply a Jacobian-times-vector approximation function, or use the default internal difference quotient
function that comes with the idals solver interface.

A user-defined Jacobian-vector function must be of type IDALsJacTimesVecFn and can be specified
through a call to IDASetJacTimes (see §4.6.6 for specification details). The evaluation and processing
of any Jacobian-related data needed by the user’s Jacobian-times-vector function may be done in the
optional user-supplied function jtsetup (see §4.6.7 for specification details). The pointer user data

received through IDASetUserData (or a pointer to NULL if user data was not specified) is passed
to the Jacobian-times-vector setup and product functions, jtsetup and jtimes, each time they are
called. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied functions without using global data in the program.

IDASetJacTimes

Call flag = IDASetJacTimes(ida mem, jsetup, jtimes);

Description The function IDASetJacTimes specifies the Jacobian-vector setup and product func-
tions.

Arguments ida mem (void *) pointer to the idas memory block.

jtsetup (IDALsJacTimesSetupFn) user-defined function to set up the Jacobian-vector
product. Pass NULL if no setup is necessary.

jtimes (IDALsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.
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IDALS SUNLS FAIL An error occurred when setting up the system matrix-times-vector
routines in the sunlinsol object used by the idals interface.

Notes The default is to use an internal finite difference quotient for jtimes and to omit
jtsetup. If NULL is passed to jtimes, these defaults are used. A user may specify
non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.

The function type IDALsJacTimesSetupFn is described in §4.6.7.

The function type IDALsJacTimesVecFn is described in §4.6.6.

The previous routine IDASpilsSetJacTimes is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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When using the default difference-quotient approximation to the Jacobian-vector product, the user
may specify the factor to use in setting increments for the finite-difference approximation, via a call
to IDASetIncrementFactor.

IDASetIncrementFactor

Call flag = IDASetIncrementFactor(ida mem, dqincfac);

Description The function IDASetIncrementFactor specifies the increment factor to be used in the
difference-quotient approximation to the product Jv. Specifically, Jv is approximated
via the formula

Jv =
1

σ
[F (t, ỹ, ỹ′)− F (t, y, y′)] ,

where ỹ = y + σv, ỹ′ = y′ + cjσv, cj is a BDF parameter proportional to the step size,

σ =
√
N dqincfac, and N is the number of equations in the DAE system.

Arguments ida mem (void *) pointer to the idas memory block.

dqincfac (realtype) user-specified increment factor (positive).

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS ILL INPUT The specified value of dqincfac is ≤ 0.

Notes The default value is 1.0.

This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.

The previous routine IDASpilsSetIncrementFactor is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.
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Additionally, when using the internal difference quotient, the user may also optionally supply an alter-
native residual function for use in the Jacobian-vector product approximation by calling IDASetJacTimesResFn.
The alternative residual function should compute a suitable (and differentiable) approximation to the
residual function provided to IDAInit. For example, as done in [28] for an ODE in explicit form,
the alternative function may use lagged values when evaluating a nonlinearity to avoid differencing a
potentially non-differentiable factor.
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IDASetJacTimesResFn

Call flag = IDASetJacTimesResFn(ida mem, jtimesResFn);

Description The function IDASetJacTimesResFn specifies an alternative DAE residual function for
use in the internal Jacobian-vector product difference quotient approximation.

Arguments ida mem (void *) pointer to the idas memory block.

jtimesResFn (IDAResFn) is the C function which computes the alternative DAE resid-
ual function to use in Jacobian-vector product difference quotient ap-
proximations. This function has the form res(t, yy, yp, resval,

user data). For full details see §4.6.1.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS ILL INPUT The internal difference quotient approximation is disabled.

Notes The default is to use the residual function provided to IDAInit in the internal difference
quotient. If the input resudual function is NULL, the default is used.

This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.
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When using an iterative linear solver, the user may supply a preconditioning operator to aid in
solution of the system. This operator consists of two user-supplied functions, psetup and psolve,
that are supplied to idas using the function IDASetPreconditioner. The psetup function supplied
to this routine should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. Both of these functions are fully specified in §4.6. The user
data pointer received through IDASetUserData (or a pointer to NULL if user data was not specified) is
passed to the psetup and psolve functions. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

Also, as described in §2.1, the idals interface requires that iterative linear solvers stop when the
norm of the preconditioned residual satisfies

‖r‖ ≤ εLε

10

where ε is the nonlinear solver tolerance, and the default εL = 0.05; this value may be modified by
the user through the IDASetEpsLin function.

IDASetPreconditioner

Call flag = IDASetPreconditioner(ida mem, psetup, psolve);

Description The function IDASetPreconditioner specifies the preconditioner setup and solve func-
tions.

Arguments ida mem (void *) pointer to the idas memory block.

psetup (IDALsPrecSetupFn) user-defined function to set up the preconditioner. Pass
NULL if no setup is necessary.

psolve (IDALsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional values have been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.
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IDALS SUNLS FAIL An error occurred when setting up preconditioning in the sunlinsol
object used by the idals interface.

Notes The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.

The function type IDALsPrecSolveFn is described in §4.6.8.

The function type IDALsPrecSetupFn is described in §4.6.9.

The previous routine IDASpilsSetPreconditioner is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.
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IDASetEpsLin

Call flag = IDASetEpsLin(ida mem, eplifac);

Description The function IDASetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear iteration test constant.

Arguments ida mem (void *) pointer to the idas memory block.

eplifac (realtype) linear convergence safety factor (≥ 0.0).

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS ILL INPUT The factor eplifac is negative.

Notes The default value is 0.05.

This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.

If eplifac= 0.0 is passed, the default value is used.

The previous routine IDASpilsSetEpsLin is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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IDASetLSNormFactor

Call flag = IDASetLSNormFactor(ida mem, nrmfac);

Description The function IDASetLSNormFactor specifies the factor to use when converting from the
integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm) for Newton
linear system solves e.g., tol L2 = fac * tol WRMS.

Arguments ida mem (void *) pointer to the idas memory block.

nrmfac (realtype) the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac
= N VGetLength(y) (default).

< 0 then the conversion factor is computed using the vector dot product nrmfac
= N VDotProd(v,v) where all the entries of v are one.

Return value The return value flag (of type int) is one of
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IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolver.

Prior to the introduction of N VGetLength in sundials v5.0.0 (idas v4.0.0) the value
of nrmfac was computed using the vector dot product i.e., the nrmfac < 0 case.
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4.5.8.3 Initial condition calculation optional input functions

The following functions can be called just prior to calling IDACalcIC to set optional inputs controlling
the initial condition calculation.

IDASetNonlinConvCoefIC

Call flag = IDASetNonlinConvCoefIC(ida mem, epiccon);

Description The function IDASetNonlinConvCoefIC specifies the positive constant in the Newton
iteration convergence test within the initial condition calculation.

Arguments ida mem (void *) pointer to the idas memory block.

epiccon (realtype) coefficient in the Newton convergence test (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The epiccon factor is <= 0.0.

Notes The default value is 0.01 · 0.33.

This test uses a weighted RMS norm (with weights defined by the tolerances). For
new initial value vectors y and ẏ to be accepted, the norm of J−1F (t0, y, ẏ) must be ≤
epiccon, where J is the system Jacobian.
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IDASetMaxNumStepsIC

Call flag = IDASetMaxNumStepsIC(ida mem, maxnh);

Description The function IDASetMaxNumStepsIC specifies the maximum number of steps allowed
when icopt=IDA YA YDP INIT in IDACalcIC, where h appears in the system Jacobian,
J = ∂F/∂y + (1/h)∂F/∂ẏ.

Arguments ida mem (void *) pointer to the idas memory block.

maxnh (int) maximum allowed number of values for h.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnh is non-positive.

Notes The default value is 5.
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IDASetMaxNumJacsIC

Call flag = IDASetMaxNumJacsIC(ida mem, maxnj);

Description The function IDASetMaxNumJacsIC specifies the maximum number of the approximate
Jacobian or preconditioner evaluations allowed when the Newton iteration appears to
be slowly converging.

Arguments ida mem (void *) pointer to the idas memory block.

maxnj (int) maximum allowed number of Jacobian or preconditioner evaluations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnj is non-positive.

Notes The default value is 4.
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IDASetMaxNumItersIC

Call flag = IDASetMaxNumItersIC(ida mem, maxnit);

Description The function IDASetMaxNumItersIC specifies the maximum number of Newton itera-
tions allowed in any one attempt to solve the initial conditions calculation problem.

Arguments ida mem (void *) pointer to the idas memory block.

maxnit (int) maximum number of Newton iterations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnit is non-positive.

Notes The default value is 10.
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IDASetMaxBacksIC

Call flag = IDASetMaxBacksIC(ida mem, maxbacks);

Description The function IDASetMaxBacksIC specifies the maximum number of linesearch back-
tracks allowed in any Newton iteration, when solving the initial conditions calculation
problem.

Arguments ida mem (void *) pointer to the idas memory block.

maxbacks (int) maximum number of linesearch backtracks per Newton step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxbacks is non-positive.

Notes The default value is 100.

If IDASetMaxBacksIC is called in a Forward Sensitivity Analysis, the the limit maxbacks
applies in the calculation of both the initial state values and the initial sensititivies.
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IDASetLineSearchOffIC

Call flag = IDASetLineSearchOffIC(ida mem, lsoff);

Description The function IDASetLineSearchOffIC specifies whether to turn on or off the linesearch
algorithm.

Arguments ida mem (void *) pointer to the idas memory block.

lsoff (booleantype) a flag to turn off (SUNTRUE) or keep (SUNFALSE) the linesearch
algorithm.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is SUNFALSE.
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IDASetStepToleranceIC

Call flag = IDASetStepToleranceIC(ida mem, steptol);

Description The function IDASetStepToleranceIC specifies a positive lower bound on the Newton
step.

Arguments ida mem (void *) pointer to the idas memory block.

steptol (int) Minimum allowed WRMS-norm of the Newton step (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The steptol tolerance is <= 0.0.

Notes The default value is (unit roundoff)2/3.
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4.5.8.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

IDASetRootDirection

Call flag = IDASetRootDirection(ida mem, rootdir);

Description The function IDASetRootDirection specifies the direction of zero-crossings to be lo-
cated and returned to the user.

Arguments ida mem (void *) pointer to the idas memory block.

rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-
ified in the call to the function IDARootInit. A value of 0 for rootdir[i]

indicates that crossing in either direction should be reported for gi. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT rootfinding has not been activated through a call to IDARootInit.

Notes The default behavior is to locate both zero-crossing directions.
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IDASetNoInactiveRootWarn

Call flag = IDASetNoInactiveRootWarn(ida mem);

Description The function IDASetNoInactiveRootWarn disables issuing a warning if some root func-
tion appears to be identically zero at the beginning of the integration.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes idas will not report the initial conditions as a possible zero-crossing (assuming that one
or more components gi are zero at the initial time). However, if it appears that some gi
is identically zero at the initial time (i.e., gi is zero at the initial time and after the first
step), idas will issue a warning which can be disabled with this optional input function.
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4.5.9 Interpolated output function

An optional function IDAGetDky is available to obtain additional output values. This function must be
called after a successful return from IDASolve and provides interpolated values of y or its derivatives
of order up to the last internal order used for any value of t in the last internal step taken by idas.

The call to the IDAGetDky function has the following form:

IDAGetDky

Call flag = IDAGetDky(ida mem, t, k, dky);

Description The function IDAGetDky computes the interpolated values of the kth derivative of y for
any value of t in the last internal step taken by idas. The value of k must be non-
negative and smaller than the last internal order used. A value of 0 for k means that
the y is interpolated. The value of t must satisfy tn − hu ≤ t ≤ tn, where tn denotes
the current internal time reached, and hu is the last internal step size used successfully.

Arguments ida mem (void *) pointer to the idas memory block.

t (realtype) time at which to interpolate.

k (int) integer specifying the order of the derivative of y wanted.

dky (N Vector) vector containing the interpolated kth derivative of y(t).

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetDky succeeded.

IDA MEM NULL The ida mem argument was NULL.

IDA BAD T t is not in the interval [tn − hu, tn].

IDA BAD K k is not one of {0, 1, . . . , klast}.
IDA BAD DKY dky is NULL.

Notes It is only legal to call the function IDAGetDky after a successful return from IDASolve.
Functions IDAGetCurrentTime, IDAGetLastStep and IDAGetLastOrder (see §4.5.10.2)
can be used to access tn, hu and klast.
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4.5.10 Optional output functions

idas provides an extensive list of functions that can be used to obtain solver performance information.
Table 4.3 lists all optional output functions in idas, which are then described in detail in the remainder
of this section.
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Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the idas solver is in doing its job. For example, the counters nsteps and nrevals

provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps

measures the performance of the nonlinear solver in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a matrix-
based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure
the overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.10.1 SUNDIALS version information

The following functions provide a way to get sundials version information at runtime.

SUNDIALSGetVersion

Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with sundials version infor-
mation.

Arguments version (char *) character array to hold the sundials version information.

len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the sundials ver-
sion information. Otherwise, it returns −1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

SUNDIALSGetVersionNumber

Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the sundials major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) sundials release major version number.

minor (int) sundials release minor version number.

patch (int) sundials release patch version number.

label (char *) character array to hold the sundials release label.

len (int) allocated length of the label character array.

Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and
label values are set. Otherwise, it returns −1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.
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Table 4.3: Optional outputs from idas and idals

Optional output Function name
IDAS main solver

Size of idas real and integer workspace IDAGetWorkSpace

Cumulative number of internal steps IDAGetNumSteps

No. of calls to residual function IDAGetNumResEvals

No. of calls to linear solver setup function IDAGetNumLinSolvSetups

No. of local error test failures that have occurred IDAGetNumErrTestFails

Order used during the last step IDAGetLastOrder

Order to be attempted on the next step IDAGetCurrentOrder

Order reductions due to stability limit detection IDAGetNumStabLimOrderReds

Actual initial step size used IDAGetActualInitStep

Step size used for the last step IDAGetLastStep

Step size to be attempted on the next step IDAGetCurrentStep

Current internal time reached by the solver IDAGetCurrentTime

Suggested factor for tolerance scaling IDAGetTolScaleFactor

Error weight vector for state variables IDAGetErrWeights

Estimated local errors IDAGetEstLocalErrors

No. of nonlinear solver iterations IDAGetNumNonlinSolvIters

No. of nonlinear convergence failures IDAGetNumNonlinSolvConvFails

Array showing roots found IDAGetRootInfo

No. of calls to user root function IDAGetNumGEvals

Name of constant associated with a return flag IDAGetReturnFlagName

IDAS initial conditions calculation
Number of backtrack operations IDAGetNumBacktrackops

Corrected initial conditions IDAGetConsistentIC

IDALS linear solver interface
Size of real and integer workspace IDAGetLinWorkSpace

No. of Jacobian evaluations IDAGetNumJacEvals

No. of residual calls for finite diff. Jacobian[-vector] evals. IDAGetNumLinResEvals

No. of linear iterations IDAGetNumLinIters

No. of linear convergence failures IDAGetNumLinConvFails

No. of preconditioner evaluations IDAGetNumPrecEvals

No. of preconditioner solves IDAGetNumPrecSolves

No. of Jacobian-vector setup evaluations IDAGetNumJTSetupEvals

No. of Jacobian-vector product evaluations IDAGetNumJtimesEvals

Last return from a linear solver function IDAGetLastLinFlag

Name of constant associated with a return flag IDAGetLinReturnFlagName
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4.5.10.2 Main solver optional output functions

idas provides several user-callable functions that can be used to obtain different quantities that may
be of interest to the user, such as solver workspace requirements, solver performance statistics, as well
as additional data from the idas memory block (a suggested tolerance scaling factor, the error weight
vector, and the vector of estimated local errors). Also provided are functions to extract statistics
related to the performance of the sunnonlinsol nonlinear solver being used. As a convenience, ad-
ditional extraction functions provide the optional outputs in groups. These optional output functions
are described next.

IDAGetWorkSpace

Call flag = IDAGetWorkSpace(ida mem, &lenrw, &leniw);

Description The function IDAGetWorkSpace returns the idas real and integer workspace sizes.

Arguments ida mem (void *) pointer to the idas memory block.

lenrw (long int) number of real values in the idas workspace.

leniw (long int) number of integer values in the idas workspace.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.6), the actual size of the real workspace, in realtype

words, is given by the following:

• base value: lenrw = 55 + (m+ 6) ∗Nr + 3∗nrtfn;

• with IDASVtolerances: lenrw = lenrw +Nr;

• with constraint checking (see IDASetConstraints): lenrw = lenrw +Nr;

• with id specified (see IDASetId): lenrw = lenrw +Nr;

where m = max(maxord, 3), and Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 38 + (m+ 6) ∗Ni + nrtfn;

• with IDASVtolerances: leniw = leniw +Ni;

• with constraint checking: lenrw = lenrw +Ni;

• with id specified: lenrw = lenrw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial
and 2*npes for nvector parallel on npes processors).

For the default value of maxord, with no rootfinding, no id, no constraints, and with
no call to IDASVtolerances, these lengths are given roughly by: lenrw = 55 + 11N ,
leniw = 49.

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.
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IDAGetNumSteps

Call flag = IDAGetNumSteps(ida mem, &nsteps);

Description The function IDAGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments ida mem (void *) pointer to the idas memory block.

nsteps (long int) number of steps taken by idas.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetNumResEvals

Call flag = IDAGetNumResEvals(ida mem, &nrevals);

Description The function IDAGetNumResEvals returns the number of calls to the user’s residual
evaluation function.

Arguments ida mem (void *) pointer to the idas memory block.

nrevals (long int) number of calls to the user’s res function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The nrevals value returned by IDAGetNumResEvals does not account for calls made to
res from a linear solver or preconditioner module.
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IDAGetNumLinSolvSetups

Call flag = IDAGetNumLinSolvSetups(ida mem, &nlinsetups);

Description The function IDAGetNumLinSolvSetups returns the cumulative number of calls made
to the linear solver’s setup function (total so far).

Arguments ida mem (void *) pointer to the idas memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetNumErrTestFails

Call flag = IDAGetNumErrTestFails(ida mem, &netfails);

Description The function IDAGetNumErrTestFails returns the cumulative number of local error
test failures that have occurred (total so far).

Arguments ida mem (void *) pointer to the idas memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetLastOrder

Call flag = IDAGetLastOrder(ida mem, &klast);

Description The function IDAGetLastOrder returns the integration method order used during the
last internal step.

Arguments ida mem (void *) pointer to the idas memory block.

klast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetCurrentOrder

Call flag = IDAGetCurrentOrder(ida mem, &kcur);

Description The function IDAGetCurrentOrder returns the integration method order to be used on
the next internal step.

Arguments ida mem (void *) pointer to the idas memory block.

kcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetLastStep

Call flag = IDAGetLastStep(ida mem, &hlast);

Description The function IDAGetLastStep returns the integration step size taken on the last internal
step (if from IDASolve), or the last value of the artificial step size h (if from IDACalcIC).

Arguments ida mem (void *) pointer to the idas memory block.

hlast (realtype) step size taken on the last internal step by idas, or last artificial
step size used in IDACalcIC, whichever was called last.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetCurrentStep

Call flag = IDAGetCurrentStep(ida mem, &hcur);

Description The function IDAGetCurrentStep returns the integration step size to be attempted on
the next internal step.

Arguments ida mem (void *) pointer to the idas memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetCurrentStep



4.5 User-callable functions 73

IDAGetActualInitStep

Call flag = IDAGetActualInitStep(ida mem, &hinused);

Description The function IDAGetActualInitStep returns the value of the integration step size used
on the first step.

Arguments ida mem (void *) pointer to the idas memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to IDASetInitStep, this value might have been changed by idas to ensure that
the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to meet the local
error test.
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IDAGetCurrentTime

Call flag = IDAGetCurrentTime(ida mem, &tcur);

Description The function IDAGetCurrentTime returns the current internal time reached by the
solver.

Arguments ida mem (void *) pointer to the idas memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetTolScaleFactor

Call flag = IDAGetTolScaleFactor(ida mem, &tolsfac);

Description The function IDAGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments ida mem (void *) pointer to the idas memory block.

tolsfac (realtype) suggested scaling factor for user tolerances.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetErrWeights

Call flag = IDAGetErrWeights(ida mem, eweight);

Description The function IDAGetErrWeights returns the solution error weights at the current time.
These are the Wi given by Eq. (2.7) (or by the user’s IDAEwtFn).

Arguments ida mem (void *) pointer to the idas memory block.

eweight (N Vector) solution error weights at the current time.
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Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for eweight.!
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IDAGetEstLocalErrors

Call flag = IDAGetEstLocalErrors(ida mem, ele);

Description The function IDAGetEstLocalErrors returns the estimated local errors.

Arguments ida mem (void *) pointer to the idas memory block.

ele (N Vector) estimated local errors at the current time.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for ele.!

The values returned in ele are only valid if IDASolve returned a non-negative value.

The ele vector, togther with the eweight vector from IDAGetErrWeights, can be used
to determine how the various components of the system contributed to the estimated
local error test. Specifically, that error test uses the RMS norm of a vector whose
components are the products of the components of these two vectors. Thus, for example,
if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight[i]*ele[i].
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IDAGetIntegratorStats

Call flag = IDAGetIntegratorStats(ida mem, &nsteps, &nrevals, &nlinsetups,

&netfails, &klast, &kcur, &hinused,

&hlast, &hcur, &tcur);

Description The function IDAGetIntegratorStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nsteps (long int) cumulative number of steps taken by idas.

nrevals (long int) cumulative number of calls to the user’s res function.

nlinsetups (long int) cumulative number of calls made to the linear solver setup
function.

netfails (long int) cumulative number of error test failures.

klast (int) method order used on the last internal step.

kcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfully set.

IDA MEM NULL the ida mem pointer is NULL.

F2003 Name FIDAGetIntegratorStats



4.5 User-callable functions 75

IDAGetNumNonlinSolvIters

Call flag = IDAGetNumNonlinSolvIters(ida mem, &nniters);

Description The function IDAGetNumNonlinSolvIters returns the cumulative number of nonlinear
iterations performed.

Arguments ida mem (void *) pointer to the idas memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA MEM FAIL The sunnonlinsol module is NULL.
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IDAGetNumNonlinSolvConvFails

Call flag = IDAGetNumNonlinSolvConvFails(ida mem, &nncfails);

Description The function IDAGetNumNonlinSolvConvFails returns the cumulative number of non-
linear convergence failures that have occurred.

Arguments ida mem (void *) pointer to the idas memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetNonlinSolvStats

Call flag = IDAGetNonlinSolvStats(ida mem, &nniters, &nncfails);

Description The function IDAGetNonlinSolvStats returns the idas nonlinear solver statistics as a
group.

Arguments ida mem (void *) pointer to the idas memory block.

nniters (long int) cumulative number of nonlinear iterations performed.

nncfails (long int) cumulative number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA MEM FAIL The sunnonlinsol module is NULL.
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IDAGetReturnFlagName

Call name = IDAGetReturnFlagName(flag);

Description The function IDAGetReturnFlagName returns the name of the idas constant correspond-
ing to flag.

Arguments The only argument, of type int, is a return flag from an idas function.

Return value The return value is a string containing the name of the corresponding constant.

F2003 Name FIDAGetReturnFlagName
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4.5.10.3 Initial condition calculation optional output functions

IDAGetNumBcktrackOps

Call flag = IDAGetNumBacktrackOps(ida mem, &nbacktr);

Description The function IDAGetNumBacktrackOps returns the number of backtrack operations done
in the linesearch algorithm in IDACalcIC.

Arguments ida mem (void *) pointer to the idas memory block.

nbacktr (long int) the cumulative number of backtrack operations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetNumBcktrackOps

IDAGetConsistentIC

Call flag = IDAGetConsistentIC(ida mem, yy0 mod, yp0 mod);

Description The function IDAGetConsistentIC returns the corrected initial conditions calculated
by IDACalcIC.

Arguments ida mem (void *) pointer to the idas memory block.

yy0 mod (N Vector) consistent solution vector.

yp0 mod (N Vector) consistent derivative vector.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA ILL INPUT The function was not called before the first call to IDASolve.

IDA MEM NULL The ida mem pointer is NULL.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yy0 mod and yp0 mod (if not NULL).!

F2003 Name FIDAGetConsistentIC

4.5.10.4 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

IDAGetRootInfo

Call flag = IDAGetRootInfo(ida mem, rootsfound);

Description The function IDAGetRootInfo returns an array showing which functions were found to
have a root.

Arguments ida mem (void *) pointer to the idas memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions gi
found to have a root. For i = 0, . . . ,nrtfn −1, rootsfound[i] 6= 0 if gi has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound. !

F2003 Name FIDAGetRootInfo

IDAGetNumGEvals

Call flag = IDAGetNumGEvals(ida mem, &ngevals);

Description The function IDAGetNumGEvals returns the cumulative number of calls to the user root
function g.

Arguments ida mem (void *) pointer to the idas memory block.

ngevals (long int) number of calls to the user’s function g so far.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetNumGEvals

4.5.10.5 idals linear solver interface optional output functions

The following optional outputs are available from the idals modules: workspace requirements, number
of calls to the Jacobian routine, number of calls to the residual routine for finite-difference Jacobian
or Jacobian-vector product approximation, number of linear iterations, number of linear convergence
failures, number of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-
vector setup and product routines, and last return value from an idals function. Note that, where
the name of an output would otherwise conflict with the name of an optional output from the main
solver, a suffix LS (for Linear Solver) has been added (e.g., lenrwLS).

IDAGetLinWorkSpace

Call flag = IDAGetLinWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDAGetLinWorkSpace returns the sizes of the real and integer workspaces
used by the idals linear solver interface.

Arguments ida mem (void *) pointer to the idas memory block.

lenrwLS (long int) the number of real values in the idals workspace.

leniwLS (long int) the number of integer values in the idals workspace.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it. The template Jacobian matrix allocated by the user outside of idals is not
included in this report.

The previous routines IDADlsGetWorkspace and IDASpilsGetWorkspace are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

F2003 Name FIDAGetLinWorkSpace
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IDAGetNumJacEvals

Call flag = IDAGetNumJacEvals(ida mem, &njevals);

Description The function IDAGetNumJacEvals returns the cumulative number of calls to the idals
Jacobian approximation function.

Arguments ida mem (void *) pointer to the idas memory block.

njevals (long int) the cumulative number of calls to the Jacobian function (total so
far).

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

Notes The previous routine IDADlsGetNumJacEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJacEvals

IDAGetNumLinResEvals

Call flag = IDAGetNumLinResEvals(ida mem, &nrevalsLS);

Description The function IDAGetNumLinResEvals returns the cumulative number of calls to the user
residual function due to the finite difference Jacobian approximation or finite difference
Jacobian-vector product approximation.

Arguments ida mem (void *) pointer to the idas memory block.

nrevalsLS (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if one of the default internal difference quotient
functions is used.

The previous routines IDADlsGetNumRhsEvals and IDASpilsGetNumRhsEvals are now
wrappers for this routine, and may still be used for backward-compatibility. However,
these will be deprecated in future releases, so we recommend that users transition to
the new routine name soon.

F2003 Name FIDAGetNumLinResEvals

IDAGetNumLinIters

Call flag = IDAGetNumLinIters(ida mem, &nliters);

Description The function IDAGetNumLinIters returns the cumulative number of linear iterations.

Arguments ida mem (void *) pointer to the idas memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.
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Notes The previous routine IDASpilsGetNumLinIters is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumLinIters

IDAGetNumLinConvFails

Call flag = IDAGetNumLinConvFails(ida mem, &nlcfails);

Description The function IDAGetNumLinConvFails returns the cumulative number of linear conver-
gence failures.

Arguments ida mem (void *) pointer to the idas memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumConvFails is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumLinConvFails

IDAGetNumPrecEvals

Call flag = IDAGetNumPrecEvals(ida mem, &npevals);

Description The function IDAGetNumPrecEvals returns the cumulative number of preconditioner
evaluations, i.e., the number of calls made to psetup.

Arguments ida mem (void *) pointer to the idas memory block.

npevals (long int) the cumulative number of calls to psetup.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumPrecEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumPrecEvals

IDAGetNumPrecSolves

Call flag = IDAGetNumPrecSolves(ida mem, &npsolves);

Description The function IDAGetNumPrecSolves returns the cumulative number of calls made to
the preconditioner solve function, psolve.

Arguments ida mem (void *) pointer to the idas memory block.

npsolves (long int) the cumulative number of calls to psolve.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.
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Notes The previous routine IDASpilsGetNumPrecSolves is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumPrecSolves

IDAGetNumJTSetupEvals

Call flag = IDAGetNumJTSetupEvals(ida mem, &njtsetup);

Description The function IDAGetNumJTSetupEvals returns the cumulative number of calls made to
the Jacobian-vector setup function jtsetup.

Arguments ida mem (void *) pointer to the idas memory block.

njtsetup (long int) the current number of calls to jtsetup.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumJTSetupEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJTSetupEvals

IDAGetNumJtimesEvals

Call flag = IDAGetNumJtimesEvals(ida mem, &njvevals);

Description The function IDAGetNumJtimesEvals returns the cumulative number of calls made to
the Jacobian-vector function, jtimes.

Arguments ida mem (void *) pointer to the idas memory block.

njvevals (long int) the cumulative number of calls to jtimes.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumJtimesEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJtimesEvals

IDAGetLastLinFlag

Call flag = IDAGetLastLinFlag(ida mem, &lsflag);

Description The function IDAGetLastLinFlag returns the last return value from an idals routine.

Arguments ida mem (void *) pointer to the idas memory block.

lsflag (long int) the value of the last return flag from an idals function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.
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Notes If the idals setup function failed (i.e., IDASolve returned IDA LSETUP FAIL) when
using the sunlinsol dense or sunlinsol band modules, then the value of lsflag is
equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix.

If the idals setup function failed when using another sunlinsol module, then lsflag

will be SUNLS PSET FAIL UNREC, SUNLS ASET FAIL UNREC, or
SUNLS PACKAGE FAIL UNREC.

If the idals solve function failed (IDASolve returned IDA LSOLVE FAIL), lsflag con-
tains the error return flag from the sunlinsol object, which will be one of:
SUNLS MEM NULL, indicating that the sunlinsol memory is NULL;
SUNLS ATIMES FAIL UNREC, indicating an unrecoverable failure in the J ∗ v function;
SUNLS PSOLVE FAIL UNREC, indicating that the preconditioner solve function psolve

failed unrecoverably; SUNLS GS FAIL, indicating a failure in the Gram-Schmidt proce-
dure (generated only in spgmr or spfgmr); SUNLS QRSOL FAIL, indicating that the
matrix R was found to be singular during the QR solve phase (spgmr and spfgmr
only); or SUNLS PACKAGE FAIL UNREC, indicating an unrecoverable failure in an external
iterative linear solver package.

The previous routines IDADlsGetLastFlag and IDASpilsGetLastFlag are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

F2003 Name FIDAGetLastLinFlag

IDAGetLinReturnFlagName

Call name = IDAGetLinReturnFlagName(lsflag);

Description The function IDAGetLinReturnFlagName returns the name of the idals constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idals function.

Return value The return value is a string containing the name of the corresponding constant.

If 1 ≤ lsflag ≤ N (LU factorization failed), this function returns “NONE”.

Notes The previous routines IDADlsGetReturnFlagName and IDASpilsGetReturnFlagName

are now wrappers for this routine, and may still be used for backward-compatibility.
However, these will be deprecated in future releases, so we recommend that users tran-
sition to the new routine name soon.

F2003 Name FIDAGetLinReturnFlagName

4.5.11 IDAS reinitialization function

The function IDAReInit reinitializes the main idas solver for the solution of a new problem, where
a prior call to IDAInit has been made. The new problem must have the same size as the previous
one. IDAReInit performs the same input checking and initializations that IDAInit does, but does
no memory allocation, as it assumes that the existing internal memory is sufficient for the new prob-
lem. A call to IDAReInit deletes the solution history that was stored internally during the previous
integration. Following a successful call to IDAReInit, call IDASolve again for the solution of the new
problem.

The use of IDAReInit requires that the maximum method order, maxord, is no larger for the new
problem than for the problem specified in the last call to IDAInit. In addition, the same nvector
module set for the previous problem will be reused for the new problem.

If there are changes to the linear solver specifications, make the appropriate calls to either the
linear solver objects themselves, or to the idals interface routines, as described in §4.5.3.
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If there are changes to any optional inputs, make the appropriate IDASet*** calls, as described in
§4.5.8. Otherwise, all solver inputs set previously remain in effect.

One important use of the IDAReInit function is in the treating of jump discontinuities in the
residual function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted DAE model, using a call to IDAReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the residual function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the residual function (communicated through
user data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

IDAReInit

Call flag = IDAReInit(ida mem, t0, y0, yp0);

Description The function IDAReInit provides required problem specifications and reinitializes idas.

Arguments ida mem (void *) pointer to the idas memory block.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC Memory space for the idas memory block was not allocated through a
previous call to IDAInit.

IDA ILL INPUT An input argument to IDAReInit has an illegal value.

Notes If an error occurred, IDAReInit also sends an error message to the error handler func-
tion.

F2003 Name FIDAReInit

4.6 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function
that handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver, and
(optionally) one or two functions that define the preconditioner for use in any of the Krylov iteration
algorithms.

4.6.1 Residual function

The user must provide a function of type IDAResFn defined as follows:

IDAResFn

Definition typedef int (*IDAResFn)(realtype tt, N Vector yy, N Vector yp,

N Vector rr, void *user data);

Purpose This function computes the problem residual for given values of the independent variable
t, state vector y, and derivative ẏ.
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Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the output residual vector F (t, y, ẏ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDAResFn function type should return a value of 0 if successful, a positive value
if a recoverable error occurred (e.g., yy has an illegal value), or a negative value if a
nonrecoverable error occurred. In the last case, the integrator halts. If a recoverable
error occurred, the integrator will attempt to correct and retry.

Notes A recoverable failure error return from the IDAResFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, idas will attempt
to recover (possibly repeating the nonlinear solve, or reducing the step size) in order to
avoid this recoverable error return.

For efficiency reasons, the DAE residual function is not evaluated at the converged solu-
tion of the nonlinear solver. Therefore, in general, a recoverable error in that converged
value cannot be corrected. (It may be detected when the right-hand side function is
called the first time during the following integration step, but a successful step cannot
be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to IDAQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore idas can be flagged to
attempt to recover from such a situation. Also, if sensitivity analysis is performed with
the staggered method, the DAE residual function is called at the converged solution of
the nonlinear system, and a recoverable error at that point can be flagged, and idas
will then try to correct it.

Allocation of memory for yp is handled within idas.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see IDASetErrFile), the user may provide a function of type IDAErrHandlerFn to process
any such messages. The function type IDAErrHandlerFn is defined as follows:

IDAErrHandlerFn

Definition typedef void (*IDAErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from idas and its sub-modules.

Arguments error code is the error code.

module is the name of the idas module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
IDASetErrHandlerFn.

Return value A IDAErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (IDA WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.
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4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type IDAEwtFn to compute a vector ewt containing the multiplicative weights Wi used in the WRMS

norm ‖ v‖WRMS =
√

(1/N)
∑N

1 (Wi · vi)2. These weights will used in place of those defined by Eq.

(2.7). The function type IDAEwtFn is defined as follows:

IDAEwtFn

Definition typedef int (*IDAEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDAEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within idas.

The error weight vector must have all components positive. It is the user’s responsiblity!

to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must
supply a C function of type IDARootFn, defined as follows:

IDARootFn

Definition typedef int (*IDARootFn)(realtype t, N Vector y, N Vector yp,

realtype *gout, void *user data);

Purpose This function computes a vector-valued function g(t, y, ẏ) such that the roots of the
nrtfn components gi(t, y, ẏ) are to be found during the integration.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t), the t−derivative of y.

gout is the output array, of length nrtfn, with components gi(t, y, ẏ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDARootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and IDASolve returns IDA RTFUNC FAIL).

Notes Allocation of memory for gout is handled within idas.

4.6.5 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e. a non-NULL sunmatrix object was supplied to
IDASetLinearSolver), the user may provide a function of type IDALsJacFn defined as follows:
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IDALsJacFn

Definition typedef int (*IDALsJacFn)(realtype tt, realtype cj,

N Vector yy, N Vector yp, N Vector rr,

SUNMatrix Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the Jacobian matrix J of the DAE system (or an approximation
to it), defined by Eq. (2.6).

Arguments tt is the current value of the independent variable t.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

Jac is the output (approximate) Jacobian matrix (of type SUNMatrix), J =
∂F/∂y + cj ∂F/∂ẏ.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDALsJacFn function as temporary storage or work space.

Return value An IDALsJacFn should return 0 if successful, a positive value if a recoverable error
occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing α in (2.6).

Notes Information regarding the structure of the specific sunmatrix structure (e.g., number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 10 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT), the
Jacobian matrix J(t, y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into Jac.

With the default nonlinear solver (the native sundials Netwon method), each call to
the user’s IDALsJacFn function is preceded by a call to the IDAResFn user function with
the same (tt, yy, yp) arguments. Thus the Jacobian function can use any auxiliary
data that is computed and saved during the evaluation of the DAE residual. In the
case of a user-supplied or external nonlinear solver, this is also true if the residual
function is evaluated prior to calling the linear solver setup function (see §12.1.4 for
more information).

If the user’s IDALsJacFn function uses difference quotient approximations, it may need
to access quantities not in the call list. These quantities may include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

dense:
A user-supplied dense Jacobian function must load the Neq × Neq dense matrix Jac

with an approximation to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp). The
accessor macros SM ELEMENT D and SM COLUMN D allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the sunmatrix dense type. SM ELEMENT D(J, i, j) references the (i, j)-th element
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of the dense matrix Jac (with i, j = 0 . . . N − 1). This macro is meant for small
problems for which efficiency of access is not a major concern. Thus, in terms of
the indices m and n ranging from 1 to N , the Jacobian element Jm,n can be set using
the statement SM ELEMENT D(J, m-1, n-1) = Jm,n. Alternatively, SM COLUMN D(J, j)

returns a pointer to the first element of the j-th column of Jac (with j = 0 . . . N− 1),
and the elements of the j-th column can then be accessed using ordinary array indexing.
Consequently, Jm,n can be loaded using the statements col n = SM COLUMN D(J, n-1);

col n[m-1] = Jm,n. For large problems, it is more efficient to use SM COLUMN D than to
use SM ELEMENT D. Note that both of these macros number rows and columns starting
from 0. The sunmatrix dense type and accessor macros are documented in §10.3.

banded:
A user-supplied banded Jacobian function must load the Neq × Neq banded matrix
Jac with an approximation to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp).
The accessor macros SM ELEMENT B, SM COLUMN B, and SM COLUMN ELEMENT B allow the
user to read and write banded matrix elements without making specific references to
the underlying representation of the sunmatrix band type. SM ELEMENT B(J, i, j)

references the (i, j)-th element of the banded matrix Jac, counting from 0. This
macro is meant for use in small problems for which efficiency of access is not a major
concern. Thus, in terms of the indices m and n ranging from 1 to N with (m,n)
within the band defined by mupper and mlower, the Jacobian element Jm,n can be
loaded using the statement SM ELEMENT B(J, m-1, n-1) = Jm,n. The elements within
the band are those with -mupper ≤ m-n ≤ mlower. Alternatively, SM COLUMN B(J,

j) returns a pointer to the diagonal element of the j-th column of Jac, and if we
assign this address to realtype *col j, then the i-th element of the j-th column
is given by SM COLUMN ELEMENT B(col j, i, j), counting from 0. Thus, for (m,n)
within the band, Jm,n can be loaded by setting col n = SM COLUMN B(J, n-1); and
SM COLUMN ELEMENT B(col n, m-1, n-1) = Jm,n. The elements of the j-th column
can also be accessed via ordinary array indexing, but this approach requires knowledge
of the underlying storage for a band matrix of type sunmatrix band. The array col n

can be indexed from −mupper to mlower. For large problems, it is more efficient to
use SM COLUMN B and SM COLUMN ELEMENT B than to use the SM ELEMENT B macro. As
in the dense case, these macros all number rows and columns starting from 0. The
sunmatrix band type and accessor macros are documented in §10.4.

sparse:
A user-supplied sparse Jacobian function must load the Neq × Neq compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(t, y, ẏ) at the point (tt, yy, yp). Storage for Jac already exists on entry to
this function, although the user should ensure that sufficient space is allocated in Jac

to hold the nonzero values to be set; if the existing space is insufficient the user may
reallocate the data and index arrays as needed. The amount of allocated space in a
sunmatrix sparse object may be accessed using the macro SM NNZ S or the routine
SUNSparseMatrix NNZ. The sunmatrix sparse type and accessor macros are docu-
mented in §10.5.

The previous function type IDADlsJacFn is identical to IDALsJacFn, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so
we recommend that users transition to the new function type name soon.

4.6.6 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued sunmatrix was supplied to
IDASetLinearSolver), the user may provide a function of type IDALsJacTimesVecFn in the following
form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a
difference quotient approximation to these products.



4.6 User-supplied functions 87

IDALsJacTimesVecFn

Definition typedef int (*IDALsJacTimesVecFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

N Vector v, N Vector Jv,

realtype cj, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the product Jv of the DAE system Jacobian J (or an approxi-
mation to it) and a given vector v, where J is defined by Eq. (2.6).

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by IDALsJacTimesVecFn as temporary storage or work space.

Return value The value returned by the Jacobian-times-vector function should be 0 if successful. A
nonzero value indicates that a nonrecoverable error occurred.

Notes This function must return a value of J ∗ v that uses the current value of J , i.e. as
evaluated at the current (t, y, ẏ).

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type IDASpilsJacTimesVecFn is identical to
IDALsJacTimesVecFn, and may still be used for backward-compatibility. However, this
will be deprecated in future releases, so we recommend that users transition to the new
function type name soon.

4.6.7 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evalu-
ated, then this needs to be done in a user-supplied function of type IDALsJacTimesSetupFn, defined
as follows:

IDALsJacTimesSetupFn

Definition typedef int (*IDALsJacTimesSetupFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

realtype cj, void *user data);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).
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yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the IDAResFn

user function with the same (t,y, yp) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type IDASpilsJacTimesSetupFn is identical to
IDALsJacTimesSetupFn, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

4.6.8 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a sunlinsol solver module, then the user must
provide a function to solve the linear system Pz = r where P is a left preconditioner matrix which
approximates (at least crudely) the Jacobian matrix J = ∂F/∂y + cj ∂F/∂ẏ. This function must be
of type IDALsPrecSolveFn, defined as follows:

IDALsPrecSolveFn

Definition typedef int (*IDALsPrecSolveFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

N Vector rvec, N Vector zvec,

realtype cj, realtype delta,

void *user data);

Purpose This function solves the preconditioning system Pz = r.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

rvec is the right-hand side vector r of the linear system to be solved.

zvec is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in weighted l2 norm, i.e.,

√∑
i(Resi · ewti)2 <

delta. To obtain the N Vector ewt, call IDAGetErrWeights (see §4.5.10.2).

user data is a pointer to user data, the same as the user data parameter passed to
the function IDASetUserData.
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Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), negative for an unrecoverable error (in which
case the integration is halted).

Notes The previous function type IDASpilsPrecSolveFn is identical to IDALsPrecSolveFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.6.9 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied function of type IDALsPrecSetupFn, defined as follows:

IDALsPrecSetupFn

Definition typedef int (*IDALsPrecSetupFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

realtype cj, void *user data);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user data is a pointer to user data, the same as the user data parameter passed to
the function IDASetUserData.

Return value The value returned by the preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), negative for an unrecoverable error (in which case
the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation.

With the default nonlinear solver (the native sundials Netwon method), each call to
the preconditioner setup function is preceded by a call to the IDAResFn user function
with the same (tt, yy, yp) arguments. Thus the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the DAE
residual. In the case of a user-supplied or external nonlinear solver, this is also true if
the residual function is evaluated prior to calling the linear solver setup function (see
§12.1.4 for more information).

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the nonlinear
solver.

If the user’s IDALsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida mem to
user data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.
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The previous function type IDASpilsPrecSetupFn is identical to IDALsPrecSetupFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.7 Integration of pure quadrature equations

idas allows the DAE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin
by excluding the quadrature variables from the vectors yy and yp and the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisfy (d/dt)yQ = fQ(t, y, ẏ). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions, etc.

This generally includes N, the problem size N (excluding quadrature variables), Nq, the number
of quadrature variables, and may include the local vector length Nlocal (excluding quadrature
variables), and local number of quadrature variables Nqlocal.

3. Set vectors of initial values

4. Create idas object

5. Initialize idas solver

6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object

9. Set linear solver optional inputs

10. Attach linear solver module

11. Set optional inputs

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Correct initial values

16. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

17. Initialize quadrature integration

Call IDAQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

18. Set optional inputs for quadrature integration

Call IDASetQuadErrCon to indicate whether or not quadrature variables should be used in the
step size control mechanism. If so, one of the IDAQuad*tolerances functions must be called to
specify the integration tolerances for quadrature variables. See §4.7.4 for details.
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19. Advance solution in time

20. Extract quadrature variables

Call IDAGetQuad or IDAGetQuadDky to obtain the values of the quadrature variables or their
derivatives at the current time. See §4.7.3 for details.

21. Get optional outputs

22. Get quadrature optional outputs

Call IDAGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

23. Deallocate memory for solution vectors and for the vector of quadrature variables

24. Free solver memory

25. Free nonlinear solver memory

26. Free linear solver and matrix memory

27. Finalize MPI, if used

IDAQuadInit can be called and quadrature-related optional inputs (step 18 above) can be set, any-
where between steps 4 and 19.

4.7.1 Quadrature initialization and deallocation functions

The function IDAQuadInit activates integration of quadrature equations and allocates internal mem-
ory related to these calculations. The form of the call to this function is as follows:

IDAQuadInit

Call flag = IDAQuadInit(ida mem, rhsQ, yQ0);

Description The function IDAQuadInit provides required problem specifications, allocates internal
memory, and initializes quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

rhsQ (IDAQuadRhsFn) is the C function which computes fQ, the right-hand side of
the quadrature equations. This function has the form fQ(t, yy, yp, rhsQ,

user data) (for full details see §4.7.6).

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA MEM FAIL A memory allocation request failed.

Notes If an error occurred, IDAQuadInit also sends an error message to the error handler
function.

F2003 Name FIDAQuadInit

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If IDAQuadSVtolerances is called: lenrw = lenrw +Nq
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and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If IDAQuadSVtolerances is called: leniw = leniw +Nq

The function IDAQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to IDAQuadInit (and
maybe a call to IDAReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to IDAQuadInit. The call to the IDAQuadReInit function has the following form:

IDAQuadReInit

Call flag = IDAQuadReInit(ida mem, yQ0);

Description The function IDAQuadReInit provides required problem specifications and reinitializes
the quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA NO QUAD Memory space for the quadrature integration was not allocated by a prior
call to IDAQuadInit.

Notes If an error occurred, IDAQuadReInit also sends an error message to the error handler
function.

F2003 Name FIDAQuadReInit

IDAQuadFree

Call IDAQuadFree(ida mem);

Description The function IDAQuadFree frees the memory allocated for quadrature integration.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAQuadFree has no return value.

Notes In general, IDAQuadFree need not be called by the user as it is invoked automatically
by IDAFree.

F2003 Name FIDAQuadFree

4.7.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the
same as in §4.5.7. However, in this case the return value flag can also be one of the following:
IDA QRHS FAIL The quadrature right-hand side function failed in an unrecoverable man-

ner.

IDA FIRST QRHS ERR The quadrature right-hand side function failed at the first call.

IDA REP QRHS ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).
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4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to IDAQuadInit, or reinitialized by a call to
IDAQuadReInit, then idas computes both a solution and quadratures at time t. However, IDASolve
will still return only the solution y in y. Solution quadratures can be obtained using the following
function:

IDAGetQuad

Call flag = IDAGetQuad(ida mem, &tret, yQ);

Description The function IDAGetQuad returns the quadrature solution vector after a successful return
from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

yQ (N Vector) the computed quadrature vector.

Return value The return value flag of IDAGetQuad is one of:

IDA SUCCESS IDAGetQuad was successful.

IDA MEM NULL ida mem was NULL.

IDA NO QUAD Quadrature integration was not initialized.

IDA BAD DKY yQ is NULL.

F2003 Name FIDAGetQuad

The function IDAGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by IDAGetQuad with k = 0 and with the current
time at which IDASolve has returned, but may also be called directly by the user.

IDAGetQuadDky

Call flag = IDAGetQuadDky(ida mem, t, k, dkyQ);

Description The function IDAGetQuadDky returns derivatives of the quadrature solution vector after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) the time at which quadrature information is requested. The time
t must fall within the interval defined by the last successful step taken by idas.

k (int) order of the requested derivative. This must be ≤ klast.
dkyQ (N Vector) the vector containing the derivative. This vector must be allocated

by the user.

Return value The return value flag of IDAGetQuadDky is one of:

IDA SUCCESS IDAGetQuadDky succeeded.

IDA MEM NULL The pointer to ida mem was NULL.

IDA NO QUAD Quadrature integration was not initialized.

IDA BAD DKY The vector dkyQ is NULL.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

F2003 Name FIDAGetQuadDky

4.7.4 Optional inputs for quadrature integration

idas provides the following optional input functions to control the integration of quadrature equa-
tions.
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IDASetQuadErrCon

Call flag = IDASetQuadErrCon(ida mem, errconQ);

Description The function IDASetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within idas. If they are, the user must
call either IDAQuadSStolerances or IDAQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.

errconQ (booleantype) specifies whether quadrature variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL

IDA NO QUAD Quadrature integration has not been initialized.

Notes By default, errconQ is set to SUNFALSE.

It is illegal to call IDASetQuadErrCon before a call to IDAQuadInit.!

F2003 Name FIDASetQuadErrCon

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

IDAQuadSStolerances

Call flag = IDAQuadSVtolerances(ida mem, reltolQ, abstolQ);

Description The function IDAQuadSStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT One of the input tolerances was negative.

F2003 Name FIDAQuadSStolerances

IDAQuadSVtolerances

Call flag = IDAQuadSVtolerances(ida mem, reltolQ, abstolQ);

Description The function IDAQuadSVtolerances specifies scalar relative and vector absolute toler-
ances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (N Vector) is the vector absolute error tolerance.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT One of the input tolerances was negative.

F2003 Name FIDAQuadSVtolerances
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4.7.5 Optional outputs for quadrature integration

idas provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

IDAGetQuadNumRhsEvals

Call flag = IDAGetQuadNumRhsEvals(ida mem, &nrhsQevals);

Description The function IDAGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments ida mem (void *) pointer to the idas memory block.

nrhsQevals (long int) number of calls made to the user’s rhsQ function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

F2003 Name FIDAGetQuadNumRhsEvals

IDAGetQuadNumErrTestFails

Call flag = IDAGetQuadNumErrTestFails(ida mem, &nQetfails);

Description The function IDAGetQuadNumErrTestFails returns the number of local error test fail-
ures due to quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

F2003 Name FIDAGetQuadNumErrTestFails

IDAGetQuadErrWeights

Call flag = IDAGetQuadErrWeights(ida mem, eQweight);

Description The function IDAGetQuadErrWeights returns the quadrature error weights at the cur-
rent time.

Arguments ida mem (void *) pointer to the idas memory block.

eQweight (N Vector) quadrature error weights at the current time.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

Notes The user must allocate memory for eQweight. !

If quadratures were not included in the error control mechanism (through a call to
IDASetQuadErrCon with errconQ = SUNTRUE), IDAGetQuadErrWeights does not set
the eQweight vector.

F2003 Name FIDAGetQuadErrWeights
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IDAGetQuadStats

Call flag = IDAGetQuadStats(ida mem, &nrhsQevals, &nQetfails);

Description The function IDAGetQuadStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nrhsQevals (long int) number of calls to the user’s rhsQ function.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfully set.

IDA MEM NULL the ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

F2003 Name FIDAGetQuadStats

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type IDAQuadRhsFn defined as follows:

IDAQuadRhsFn

Definition typedef int (*IDAQuadRhsFn)(realtype t, N Vector yy, N Vector yp,

N Vector rhsQ, void *user data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable t and state vectors y and ẏ.

Arguments t is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of the dependent variable derivative vector, ẏ(t).

rhsQ is the output vector fQ(t, y, ẏ).

user data is the user data pointer passed to IDASetUserData.

Return value A IDAQuadRhsFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA QRHS FAIL is returned).

Notes Allocation of memory for rhsQ is automatically handled within idas.

Both y and rhsQ are of type N Vector, but they typically have different internal repre-
sentations. It is the user’s responsibility to access the vector data consistently (including
the use of the correct accessor macros from each nvector implementation). For the
sake of computational efficiency, the vector functions in the two nvector implementa-
tions provided with idas do not perform any consistency checks with respect to their
N Vector arguments (see §9.3 and §9.4).

There is one situation in which recovery is not possible even if IDAQuadRhsFn function
returns a recoverable error flag. This is when this occurs at the very first call to the
IDAQuadRhsFn (in which case idas returns IDA FIRST QRHS ERR).

4.8 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel DAE solver such as idas lies in the solution of partial differential
equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (2.5) that must be
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solved at each time step. The linear algebraic system is large, sparse, and structured. However, if a
Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to be
used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably slow.
Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [41] and is
included in a software module within the idas package. This module works with the parallel vector
module nvector parallel and generates a preconditioner that is a block-diagonal matrix with each
block being a band matrix. The blocks need not have the same number of super- and sub-diagonals,
and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module
is called idabbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping sub-domains. Each of these sub-domains is then
assigned to one of the M processors to be used to solve the DAE system. The basic idea is to isolate the
preconditioning so that it is local to each processor, and also to use a (possibly cheaper) approximate
residual function. This requires the definition of a new function G(t, y, ẏ) which approximates the
function F (t, y, ẏ) in the definition of the DAE system (2.1). However, the user may set G = F .
Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and ẏ
into M disjoint blocks ym and ẏm, and a decomposition of G into blocks Gm. The block Gm depends
on ym and ẏm, and also on components of ym′ and ẏm′ associated with neighboring sub-domains
(so-called ghost-cell data). Let ȳm and ¯̇ym denote ym and ẏm (respectively) augmented with those
other components on which Gm depends. Then we have

G(t, y, ẏ) = [G1(t, ȳ1, ¯̇y1), G2(t, ȳ2, ¯̇y2), . . . , GM (t, ȳM , ¯̇yM )]T , (4.1)

and each of the blocks Gm(t, ȳm, ¯̇ym) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)

where
Pm ≈ ∂Gm/∂ym + α∂Gm/∂ẏm (4.3)

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and mldq defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The difference
quotient approximation is computed using mudq + mldq +2 evaluations of Gm, but only a matrix of
bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the DAE system outside a certain bandwidth are considerably weaker than those within
the band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards
the elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation.

The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations
Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatment of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The idabbdpre module calls two user-provided functions to construct P : a required function
Gres (of type IDABBDLocalFn) which approximates the residual function G(t, y, ẏ) ≈ F (t, y, ẏ) and
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which is computed locally, and an optional function Gcomm (of type IDABBDCommFn) which performs
all inter-process communication necessary to evaluate the approximate residual G. These are in
addition to the user-supplied residual function res. Both functions take as input the same pointer
user data as passed by the user to IDASetUserData and passed to the user’s function res. The user
is responsible for providing space (presumably within user data) for components of yy and yp that
are communicated by Gcomm from the other processors, and that are then used by Gres, which should
not do any communication.

IDABBDLocalFn

Definition typedef int (*IDABBDLocalFn)(sunindextype Nlocal, realtype tt,

N Vector yy, N Vector yp, N Vector gval,

void *user data);

Purpose This Gres function computes G(t, y, ẏ). It loads the vector gval as a function of tt,
yy, and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

gval is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDABBDLocalFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes This function must assume that all inter-processor communication of data needed to
calculate gval has already been done, and this data is accessible within user data.

The case where G is mathematically identical to F is allowed.

IDABBDCommFn

Definition typedef int (*IDABBDCommFn)(sunindextype Nlocal, realtype tt,

N Vector yy, N Vector yp, void *user data);

Purpose This Gcomm function performs all inter-processor communications necessary for the ex-
ecution of the Gres function above, using the input vectors yy and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDABBDCommFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user data.

Each call to the Gcomm function is preceded by a call to the residual function res with
the same (tt, yy, yp) arguments. Thus Gcomm can omit any communications done by
res if relevant to the evaluation of Gres. If all necessary communication was done in
res, then Gcomm = NULL can be passed in the call to IDABBDPrecInit (see below).
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Besides the header files required for the integration of the DAE problem (see §4.3), to use the
idabbdpre module, the main program must include the header file idas bbdpre.h which declares
the needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions etc.

3. Set vectors of initial values

4. Create idas object

5. Initialize idas solver

6. Specify integration tolerances

7. Create linear solver object

When creating the iterative linear solver object, specify the use of left preconditioning (PREC LEFT)
as idas only supports left preconditioning.

8. Set linear solver optional inputs

9. Attach linear solver module

10. Set optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to idIDASetPreconditioner optional input function.

11. Initialize the idabbdpre preconditioner module

Specify the upper and lower bandwidths mudq, mldq and mukeep, mlkeep and call

flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
IDABBDPrecInit are the two user-supplied functions described above.

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Correct initial values

16. Specify rootfinding problem

17. Advance solution in time

18. Get optional outputs

Additional optional outputs associated with idabbdpre are available by way of two routines
described below, IDABBDPrecGetWorkSpace and IDABBDPrecGetNumGfnEvals.

19. Deallocate memory for solution vectors

20. Free solver memory
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21. Free nonlinear solver memory

22. Free linear solver memory

23. Finalize MPI

The user-callable functions that initialize (step 11 above) or re-initialize the idabbdpre preconditioner
module are described next.

IDABBDPrecInit

Call flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

Description The function IDABBDPrecInit initializes and allocates (internal) memory for the id-
abbdpre preconditioner.

Arguments ida mem (void *) pointer to the idas memory block.

Nlocal (sunindextype) local vector dimension.

mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dq rel yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq rel yy=

√
unit roundoff, which

can be specified by passing dq rel yy= 0.0.

Gres (IDABBDLocalFn) the C function which computes the local residual approx-
imation G(t, y, ẏ).

Gcomm (IDABBDCommFn) the optional C function which performs all inter-process
communication required for the computation of G(t, y, ẏ).

Return value The return value flag (of type int) is one of

IDALS SUCCESS The call to IDABBDPrecInit was successful.

IDALS MEM NULL The ida mem pointer was NULL.

IDALS MEM FAIL A memory allocation request has failed.

IDALS LMEM NULL An idals linear solver memory was not attached.

IDALS ILL INPUT The supplied vector implementation was not compatible with the
block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced by 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

F2003 Name FIDABBDPrecInit



4.8 A parallel band-block-diagonal preconditioner module 101

The idabbdpre module also provides a reinitialization function to allow for a sequence of prob-
lems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling IDAReInit to re-initialize idas for
a subsequent problem, a call to IDABBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
increment dq rel yy, or one of the user-supplied functions Gres and Gcomm. If there is a change in
any of the linear solver inputs, an additional call to the “Set” routines provided by the sunlinsol
module, and/or one or more of the corresponding IDASet*** functions, must also be made (in the
proper order).

IDABBDPrecReInit

Call flag = IDABBDPrecReInit(ida mem, mudq, mldq, dq rel yy);

Description The function IDABBDPrecReInit reinitializes the idabbdpre preconditioner.

Arguments ida mem (void *) pointer to the idas memory block.

mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

dq rel yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq rel yy =

√
unit roundoff, which

can be specified by passing dq rel yy = 0.0.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The call to IDABBDPrecReInit was successful.

IDALS MEM NULL The ida mem pointer was NULL.

IDALS LMEM NULL An idals linear solver memory was not attached.

IDALS PMEM NULL The function IDABBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal−1,
it is replaced by 0 or Nlocal−1, accordingly.

F2003 Name FIDABBDPrecReInit

The following two optional output functions are available for use with the idabbdpre module:

IDABBDPrecGetWorkSpace

Call flag = IDABBDPrecGetWorkSpace(ida mem, &lenrwBBDP, &leniwBBDP);

Description The function IDABBDPrecGetWorkSpace returns the local sizes of the idabbdpre real
and integer workspaces.

Arguments ida mem (void *) pointer to the idas memory block.

lenrwBBDP (long int) local number of real values in the idabbdpre workspace.

leniwBBDP (long int) local number of integer values in the idabbdpre workspace.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer was NULL.

IDALS PMEM NULL The idabbdpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within the idabbdpre module (the banded matrix approximation, banded sun-
linsol object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function IDAGetLinWorkSpace.

F2003 Name FIDABBDPrecGetWorkSpace
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IDABBDPrecGetNumGfnEvals

Call flag = IDABBDPrecGetNumGfnEvals(ida mem, &ngevalsBBDP);

Description The function IDABBDPrecGetNumGfnEvals returns the cumulative number of calls to
the user Gres function due to the finite difference approximation of the Jacobian blocks
used within idabbdpre’s preconditioner setup function.

Arguments ida mem (void *) pointer to the idas memory block.

ngevalsBBDP (long int) the cumulative number of calls to the user Gres function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer was NULL.

IDALS PMEM NULL The idabbdpre preconditioner has not been initialized.

F2003 Name FIDABBDPrecGetNumGfnEvals

In addition to the ngevalsBBDP Gres evaluations, the costs associated with idabbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nrevalsLS residual function evaluations, where nlinsetups is an optional idas output (see §4.5.10.2),
and npsolves and nrevalsLS are linear solver optional outputs (see §4.5.10.5).



Chapter 5

Using IDAS for Forward Sensitivity
Analysis

This chapter describes the use of idas to compute solution sensitivities using forward sensitivity anal-
ysis. One of our main guiding principles was to design the idas user interface for forward sensitivity
analysis as an extension of that for IVP integration. Assuming a user main program and user-defined
support routines for IVP integration have already been defined, in order to perform forward sensitivity
analysis the user only has to insert a few more calls into the main program and (optionally) define
an additional routine which computes the residuals for sensitivity systems (2.12). The only departure
from this philosophy is due to the IDAResFn type definition (§4.6.1). Without changing the definition
of this type, the only way to pass values of the problem parameters to the DAE residual function is
to require the user data structure user data to contain a pointer to the array of real parameters p.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of idas.
The user program is to have these steps in the order indicated, unless otherwise noted. For the sake
of brevity, we defer many of the details to the later sections. As in §4.4, most steps are independent
of the nvector, sunmatrix, sunlinsol, and sunnonlinsol implementations used. For the steps
that are not, refer to Chapter 9, 10, 11, and 12 for the specific name of the function to be called or
macro to be referenced.

Differences between the user main program in §4.4 and the one below start only at step (16). Steps
that are unchanged from the skeleton program presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions etc.

3. Set vectors of initial values

4. Create idas object

5. Initialize idas solver
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6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object

9. Set linear solver optional inputs

10. Attach linear solver module

11. Set optional inputs

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Initialize quadrature problem, if not sensitivity-dependent

16. Define the sensitivity problem

•Number of sensitivities (required)

Set Ns = Ns, the number of parameters with respect to which sensitivities are to be computed.

•Problem parameters (optional)

If idas is to evaluate the residuals of the sensitivity systems, set p, an array of Np real
parameters upon which the IVP depends. Only parameters with respect to which sensitivities
are (potentially) desired need to be included. Attach p to the user data structure user data.
For example, user data->p = p;

If the user provides a function to evaluate the sensitivity residuals, p need not be specified.

•Parameter list (optional)

If idas is to evaluate the sensitivity residuals, set plist, an array of Ns integers to specify the
parameters p with respect to which solution sensitivities are to be computed. If sensitivities
with respect to the j-th parameter p[j] (0 ≤ j < Np) are desired, set plisti = j, for some
i = 0, . . . , Ns − 1.

If plist is not specified, idas will compute sensitivities with respect to the first Ns parame-
ters; i.e., plisti = i (i = 0, . . . , Ns − 1).

If the user provides a function to evaluate the sensitivity residuals, plist need not be spec-
ified.

•Parameter scaling factors (optional)

If idas is to estimate tolerances for the sensitivity solution vectors (based on tolerances for
the state solution vector) or if idas is to evaluate the residuals of the sensitivity systems
using the internal difference-quotient function, the results will be more accurate if order of
magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if pi 6= 0, the value p̄i = |pplisti |
can be used.

If pbar is not specified, idas will use p̄i = 1.0.

If the user provides a function to evaluate the sensitivity residual and specifies tolerances for
the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user data are arbitrary, but they
must agree with the arguments passed to IDASetSensParams below.
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17. Set sensitivity initial conditions

Set the Ns vectors yS0[i] and ypS0[i] of initial values for sensitivities (for i = 0, . . . , Ns −1),
using the appropriate functions defined by the particular nvector implementation chosen.

First, create an array of Ns vectors by making the appropriate call

yS0 = N VCloneVectorArray ***(Ns, y0);

or

yS0 = N VCloneVectorArrayEmpty ***(Ns, y0);

Here the argument y0 serves only to provide the N Vector type for cloning.

Then, for each i = 0, . . . ,Ns −1, load initial values for the i-th sensitivity vector yS0[i].

Set the initial conditions for the Ns sensitivity derivative vectors ypS0 of ẏ similarly.

18. Activate sensitivity calculations

Call flag = IDASensInit(...); to activate forward sensitivity computations and allocate inter-
nal memory for idas related to sensitivity calculations (see §5.2.1).

19. Set sensitivity tolerances

Call IDASensSStolerances, IDASensSVtolerances, or IDASensEEtolerances. See §5.2.2.

20. Set sensitivity analysis optional inputs

Call IDASetSens* routines to change from their default values any optional inputs that control
the behavior of idas in computing forward sensitivities. See §5.2.7.

21. Create sensitivity nonlinear solver object (optional)

If using a non-default nonlinear solver (see §5.2.3), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular sunnonlinsol imple-
mentation e.g.,

NLSSens = SUNNonlinSol_***Sens(...);

where *** is the name of the nonlinear solver and ... are constructor specific arguments (see
Chapter 12 for details).

22. Attach the sensitvity nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching
the nonlinear solver object by calling

ier = IDASetNonlinearSolverSensSim(ida_mem, NLSSens);

when using the IDA SIMULTANEOUS corrector method or

ier = IDASetNonlinearSolverSensStg(ida_mem, NLSSens);

when using the IDA STAGGERED corrector method (see §5.2.3 for details).

23. Set sensitivity nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after IDASensInit if using the
default nonlinear solver or after attaching a new nonlinear solver to idas, otherwise the optional
inputs will be overridden by idas defaults. See Chapter 12 for more information on optional
inputs.
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24. Correct initial values

25. Specify rootfinding problem

26. Advance solution in time

27. Extract sensitivity solution

After each successful return from IDASolve, the solution of the original IVP is available in the y

argument of IDASolve, while the sensitivity solution can be extracted into yS and ypS (which can
be the same as yS0 and ypS0, respectively) by calling one of the following routines: IDAGetSens,
IDAGetSens1, IDAGetSensDky or IDAGetSensDky1 (see §5.2.6).

28. Get optional outputs

29. Deallocate memory for solution vector

30. Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors contained in yS0 and ypS0:

N VDestroyVectorArray ***(yS0, Ns);

If yS was created from realtype arrays yS i, it is the user’s responsibility to also free the space
for the arrays yS i, and likewise for ypS.

31. Free user data structure

32. Free solver memory

33. Free nonlinear solver memory

34. Free vector specification memory

35. Free linear solver and matrix memory

36. Finalize MPI, if used

5.2 User-callable routines for forward sensitivity analysis

This section describes the idas functions, in addition to those presented in §4.5, that are called by
the user to set up and solve a forward sensitivity problem.

5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling IDASensInit. The form of the call
to this routine is as follows:

IDASensInit

Call flag = IDASensInit(ida mem, Ns, ism, resS, yS0, ypS0);

Description The routine IDASensInit activates forward sensitivity computations and allocates in-
ternal memory related to sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
either IDA SIMULTANEOUS or IDA STAGGERED:
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• In the IDA SIMULTANEOUS approach, the state and sensitivity variables are
corrected at the same time. If the default Newton nonlinear solver is used,
this amounts to performing a modified Newton iteration on the combined
nonlinear system;

• In the IDA STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the state
variables have passed the local error test;

resS (IDASensResFn) is the C function which computes the residual of the sensitiv-
ity DAE. For full details see §5.3.

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities of y.

ypS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASensInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT An input argument to IDASensInit has an illegal value.

Notes Passing resS=NULL indicates using the default internal difference quotient sensitivity
residual routine.

If an error occurred, IDASensInit also prints an error message to the file specified by
the optional input errfp.

F2003 Name FIDASensInit

In terms of the problem size N , number of sensitivity vectors Ns, and maximum method order maxord,
the size of the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)NsN

• With IDASensSVtolerances: lenrw = lenrw +NsN

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)NsNi

• With IDASensSVtolerances: leniw = leniw +NsNi,

where Ni is the number of integer words in one N Vector.
The routine IDASensReInit, useful during the solution of a sequence of problems of same size,

reinitializes the sensitivity-related internal memory and must follow a call to IDASensInit (and maybe
a call to IDAReInit). The number Ns of sensitivities is assumed to be unchanged since the call to
IDASensInit. The call to the IDASensReInit function has the form:

IDASensReInit

Call flag = IDASensReInit(ida mem, ism, yS0, ypS0);

Description The routine IDASensReInit reinitializes forward sensitivity computations.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

ism (int) a flag used to select the sensitivity solution method. Its value can be
either IDA SIMULTANEOUS or IDA STAGGERED.

yS0 (N Vector *) a pointer to an array of Ns variables of type N Vector containing
the initial values of the sensitivities of y.
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ypS0 (N Vector *) a pointer to an array of Ns variables of type N Vector containing
the initial values of the sensitivities of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS Memory space for sensitivity integration was not allocated through a
previous call to IDASensInit.

IDA ILL INPUT An input argument to IDASensReInit has an illegal value.

IDA MEM FAIL A memory allocation request has failed.

Notes All arguments of IDASensReInit are the same as those of IDASensInit.

If an error occurred, IDASensReInit also prints an error message to the file specified
by the optional input errfp.

F2003 Name FIDASensReInit

To deallocate all forward sensitivity-related memory (allocated in a prior call to IDASensInit), the
user must call

IDASensFree

Call IDASensFree(ida mem);

Description The function IDASensFree frees the memory allocated for forward sensitivity compu-
tations by a previous call to IDASensInit.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDASensFree has no return value.

Notes In general, IDASensFree need not be called by the user as it is invoked automatically
by IDAFree.

After a call to IDASensFree, forward sensitivity computations can be reactivated only
by calling IDASensInit again.

F2003 Name FIDASensFree

To activate and deactivate forward sensitivity calculations for successive idas runs, without having
to allocate and deallocate memory, the following function is provided:

IDASensToggleOff

Call IDASensToggleOff(ida mem);

Description The function IDASensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

Return value The return value flag of IDASensToggle is one of:

IDA SUCCESS IDASensToggleOff was successful.

IDA MEM NULL ida mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using IDASensReInit).

F2003 Name FIDASensToggleOff

5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to IDASensInit.
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IDASensSStolerances

Call flag = IDASensSStolerances(ida mem, reltolS, abstolS);

Description The function IDASensSStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (realtype*) is a pointer to an array of length Ns containing the scalar absolute
error tolerances.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS The sensitivity allocation function IDASensInit has not been called.

IDA ILL INPUT One of the input tolerances was negative.

F2003 Name FIDASensSStolerances

IDASensSVtolerances

Call flag = IDASensSVtolerances(ida mem, reltolS, abstolS);

Description The function IDASensSVtolerances specifies scalar relative tolerance and vector abso-
lute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (N Vector*) is an array of Ns variables of type N Vector. The N Vector from
abstolS[is] specifies the vector tolerances for is-th sensitivity.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS The sensitivity allocation function IDASensInit has not been called.

IDA ILL INPUT The relative error tolerance was negative or one of the absolute tolerance
vectors had a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].

F2003 Name FIDASensSVtolerances

IDASensEEtolerances

Call flag = IDASensEEtolerances(ida mem);

Description When IDASensEEtolerances is called, idas will estimate tolerances for sensitivity vari-
ables based on the tolerances supplied for states variables and the scaling factors p̄.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASensEEtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS The sensitivity allocation function IDASensInit has not been called.

F2003 Name FIDASensEEtolerances
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5.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure DAE case, when computing solution sensitivities using forward sensitivitiy analysis idas
uses the sunnonlinsol implementation of Newton’s method defined by the sunnonlinsol newton
module (see §12.3) by default. To specify a different nonlinear solver in idas, the user’s program
must create a sunnonlinsol object by calling the appropriate constructor routine. The user must
then attach the sunnonlinsol object to idas by calling either IDASetNonlinearSolverSensSim

when using the IDA SIMULTANEOUS corrector option, or IDASetNonlinearSolver (see §4.5.4) and
IDASetNonlinearSolverSensStg when using the IDA STAGGERED corrector option, as documented
below.

When changing the nonlinear solver in idas, IDASetNonlinearSolver must be called after IDAInit;
similarly IDASetNonlinearSolverSensSim and IDASetNonlinearSolverStg must be called after
IDASensInit. If any calls to IDASolve have been made, then idas will need to be reinitialized
by calling IDAReInit to ensure that the nonlinear solver is initialized correctly before any subsequent
calls to IDASolve.

The first argument passed to the routines IDASetNonlinearSolverSensSim and
IDASetNonlinearSolverSensStg is the idas memory pointer returned by IDACreate and the second
argument is the sunnonlinsol object to use for solving the nonlinear system 2.4. A call to this
function attaches the nonlinear solver to the main idas integrator. We note that at present, the
sunnonlinsol object must be of type SUNNONLINEARSOLVER ROOTFIND.

IDASetNonlinearSolverSensSim

Call flag = IDASetNonlinearSolverSensSim(ida mem, NLS);

Description The function IDASetNonLinearSolverSensSim attaches a sunnonlinsol object (NLS)
to idas when using the IDA SIMULTANEOUS approach to correct the state and sensitivity
variables at the same time.

Arguments ida mem (void *) pointer to the idas memory block.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA SUCCESS The nonlinear solver was successfully attached.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The sunnonlinsol object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

F2003 Name FIDASetNonlinearSolverSensSim

IDASetNonlinearSolverSensStg

Call flag = IDASetNonlinearSolverSensStg(ida mem, NLS);

Description The function IDASetNonLinearSolverSensStg attaches a sunnonlinsol object (NLS)
to idas when using the IDA STAGGERED approach to correct the sensitivity variables
after the correction of the state variables.

Arguments ida mem (void *) pointer to the idas memory block.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA SUCCESS The nonlinear solver was successfully attached.

IDA MEM NULL The ida mem pointer is NULL.
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IDA ILL INPUT The sunnonlinsol object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

Notes This function only attaches the sunnonlinsol object for correcting the sensitivity
variables. To attach a sunnonlinsol object for the state variable correction use
IDASetNonlinearSolver (see §4.5.4).

F2003 Name FIDASetNonlinearSolverSensStg

5.2.4 Forward sensitivity initial condition calculation function

IDACalcIC also calculates corrected initial conditions for sensitivity variables of a DAE system. When
used for initial conditions calculation of the forward sensitivities, IDACalcIC must be preceded by
successful calls to IDASensInit (or IDASensReInit) and should precede the call(s) to IDASolve. For
restrictions that apply for initial conditions calculation of the state variables, see §4.5.5.

Calling IDACalcIC is optional. It is only necessary when the initial conditions do not satisfy the
sensitivity systems. Even if forward sensitivity analysis was enabled, the call to the initial conditions
calculation function IDACalcIC is exactly the same as for state variables.

flag = IDACalcIC(ida_mem, icopt, tout1);

See §4.5.5 for a list of possible return values.

5.2.5 IDAS solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function IDASolve is
exactly the same as in §4.5.7. However, in this case the return value flag can also be one of the
following:
IDA SRES FAIL The sensitivity residual function failed in an unrecoverable manner.

IDA REP SRES ERR The user’s residual function repeatedly returned a recoverable error flag, but the
solver was unable to recover.

5.2.6 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to IDASensInit, or reinitialized by
a call to IDASensReInit, then idas computes both a solution and sensitivities at time t. However,
IDASolve will still return only the solutions y and ẏ in yret and ypret, respectively. Solution
sensitivities can be obtained through one of the following functions:

IDAGetSens

Call flag = IDAGetSens(ida mem, &tret, yS);

Description The function IDAGetSens returns the sensitivity solution vectors after a successful return
from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

yS (N Vector *) the array of Ns computed forward sensitivity vectors.

Return value The return value flag of IDAGetSens is one of:

IDA SUCCESS IDAGetSens was successful.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD DKY yS is NULL.
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Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.

F2003 Name FIDAGetSens

The function IDAGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by IDAGetSens with k = 0, but may also be
called directly by the user.

IDAGetSensDky

Call flag = IDAGetSensDky(ida mem, t, k, dkyS);

Description The function IDAGetSensDky returns derivatives of the sensitivity solution vectors after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivatives. k must be in the range 0, 1, ..., klast where klast is
the method order of the last successful step.

dkyS (N Vector *) array of Ns vectors containing the derivatives on output. The
space for dkyS must be allocated by the user.

Return value The return value flag of IDAGetSensDky is one of:

IDA SUCCESS IDAGetSensDky succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD DKY dkyS or one of the vectors dkyS[i] is NULL.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

F2003 Name FIDAGetSensDky

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetSens1 and IDAGetSensDky1, defined as follows:

IDAGetSens1

Call flag = IDAGetSens1(ida mem, &tret, is, yS);

Description The function IDAGetSens1 returns the is-th sensitivity solution vector after a successful
return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype *) the time reached by the solver (output).

is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).

yS (N Vector) the computed forward sensitivity vector.

Return value The return value flag of IDAGetSens1 is one of:

IDA SUCCESS IDAGetSens1 was successful.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD IS The index is is not in the allowed range.

IDA BAD DKY yS is NULL.

IDA BAD T The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.

F2003 Name FIDAGetSens1



5.2 User-callable routines for forward sensitivity analysis 113

IDAGetSensDky1

Call flag = IDAGetSensDky1(ida mem, t, k, is, dkyS);

Description The function IDAGetSensDky1 returns the k-th derivative of the is-th sensitivity solu-
tion vector after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivative. k must be in the range 0, 1, ..., klast where klast is
the method order of the last successful step.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyS (N Vector) the vector containing the derivative on output. The space for dkyS
must be allocated by the user.

Return value The return value flag of IDAGetSensDky1 is one of:

IDA SUCCESS IDAGetQuadDky1 succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD DKY dkyS is NULL.

IDA BAD IS The index is is not in the allowed range.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

F2003 Name FIDAGetSensDky1

5.2.7 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to IDASetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in idas which are described in detail in the remainder of this section.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. All error return values are negative, so the test flag < 0 will catch all errors.
Finally, a call to a IDASetSens*** function can be made from the user’s calling program at any time
and, if successful, takes effect immediately.

IDASetSensParams

Call flag = IDASetSensParams(ida mem, p, pbar, plist);

Description The function IDASetSensParams specifies problem parameter information for sensitivity
calculations.

Arguments ida mem (void *) pointer to the idas memory block.

p (realtype *) a pointer to the array of real problem parameters used to evalu-
ate F (t, y, ẏ, p). If non-NULL, p must point to a field in the user’s data structure
user data passed to the user’s residual function. (See §5.1).

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors IDASetSensParams NULL

DQ approximation method IDASetSensDQMethod centered,0.0
Error control strategy IDASetSensErrCon SUNFALSE

Maximum no. of nonlinear iterations IDASetSensMaxNonlinIters 4
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pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components of p
to use in estimating the sensitivity equations. If non-NULL, plist must have
all components ≥ 0. (See §5.1).

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA ILL INPUT An argument has an illegal value.

Notes This function must be preceded by a call to IDASensInit.!

F2003 Name FIDASetSensParams

IDASetSensDQMethod

Call flag = IDASetSensDQMethod(ida mem, DQtype, DQrhomax);

Description The function IDASetSensDQMethod specifies the difference quotient strategy in the case
in which the residual of the sensitivity equations are to be computed by idas.

Arguments ida mem (void *) pointer to the idas memory block.

DQtype (int) specifies the difference quotient type and can be either IDA CENTERED or
IDA FORWARD.

DQrhomax (realtype) positive value of the selection parameter used in deciding switch-
ing between a simultaneous or separate approximation of the two terms in the
sensitivity residual.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax ≥ 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.5 for more details.

The default value are DQtype=IDA CENTERED and DQrhomax= 0.0.

F2003 Name FIDASetSensDQMethod

IDASetSensErrCon

Call flag = IDASetSensErrCon(ida mem, errconS);

Description The function IDASetSensErrCon specifies the error control strategy for sensitivity vari-
ables.

Arguments ida mem (void *) pointer to the idas memory block.

errconS (booleantype) specifies whether sensitivity variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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Notes By default, errconS is set to SUNFALSE. If errconS=SUNTRUE then both state variables
and sensitivity variables are included in the error tests. If errconS=SUNFALSE then
the sensitivity variables are excluded from the error tests. Note that, in any event, all
variables are considered in the convergence tests.

F2003 Name FIDASetSensErrCon

IDASetSensMaxNonlinIters

Call flag = IDASetSensMaxNonlinIters(ida mem, maxcorS);

Description The function IDASetSensMaxNonlinIters specifies the maximum number of nonlinear
solver iterations for sensitivity variables per step.

Arguments ida mem (void *) pointer to the idas memory block.

maxcorS (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA MEM FAIL The ida mem sunnonlinsol module is NULL.

Notes The default value is 4.

F2003 Name FIDASetSensMaxNonlinIters

5.2.8 Optional outputs for forward sensitivity analysis

5.2.8.1 Main solver optional output functions

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.

IDAGetSensNumResEvals

Call flag = IDAGetSensNumResEvals(ida mem, &nfSevals);

Description The function IDAGetSensNumResEvals returns the number of calls to the sensitivity
residual function.

Arguments ida mem (void *) pointer to the idas memory block.

nfSevals (long int) number of calls to the sensitivity residual function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

Table 5.2: Forward sensitivity optional outputs

Optional output Routine name
No. of calls to sensitivity residual function IDAGetSensNumResEvals

No. of calls to residual function for sensitivity IDAGetNumResEvalsSens

No. of sensitivity local error test failures IDAGetSensNumErrTestFails

No. of calls to lin. solv. setup routine for sens. IDAGetSensNumLinSolvSetups

Sensitivity-related statistics as a group IDAGetSensStats

Error weight vector for sensitivity variables IDAGetSensErrWeights

No. of sens. nonlinear solver iterations IDAGetSensNumNonlinSolvIters

No. of sens. convergence failures IDAGetSensNumNonlinSolvConvFails

Sens. nonlinear solver statistics as a group IDAGetSensNonlinSolvStats
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IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

F2003 Name FIDAGetSensNumResEvals

IDAGetNumResEvalsSens

Call flag = IDAGetNumResEvalsSens(ida mem, &nfevalsS);

Description The function IDAGetNumResEvalsSEns returns the number of calls to the user’s residual
function due to the internal finite difference approximation of the sensitivity residuals.

Arguments ida mem (void *) pointer to the idas memory block.

nfevalsS (long int) number of calls to the user residual function for sensitivity resid-
uals.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity residuals.

F2003 Name FIDAGetNumResEvalsSens

IDAGetSensNumErrTestFails

Call flag = IDAGetSensNumErrTestFails(ida mem, &nSetfails);

Description The function IDAGetSensNumErrTestFails returns the number of local error test fail-
ures for the sensitivity variables that have occurred.

Arguments ida mem (void *) pointer to the idas memory block.

nSetfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the sensitivity variables have been included in the
error test (see IDASetSensErrCon in §5.2.7). Even in that case, this counter is not
incremented if the ism=IDA SIMULTANEOUS sensitivity solution method has been used.

F2003 Name FIDAGetSensNumErrTestFails

IDAGetSensNumLinSolvSetups

Call flag = IDAGetSensNumLinSolvSetups(ida mem, &nlinsetupsS);

Description The function IDAGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.
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Notes This counter is incremented only if a nonlinear solver requiring linear solves has been
used and staggered sensitivity solution method (ism=IDA STAGGERED) was specified in
the call to IDASensInit (see §5.2.1).

F2003 Name FIDAGetSensNumLinSolvSetups

IDAGetSensStats

Call flag = IDAGetSensStats(ida mem, &nfSevals, &nfevalsS, &nSetfails,

&nlinsetupsS);

Description The function IDAGetSensStats returns all of the above sensitivity-related solver statis-
tics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nfSevals (long int) number of calls to the sensitivity residual function.

nfevalsS (long int) number of calls to the user-supplied residual function.

nSetfails (long int) number of error test failures.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

F2003 Name FIDAGetSensStats

IDAGetSensErrWeights

Call flag = IDAGetSensErrWeights(ida mem, eSweight);

Description The function IDAGetSensErrWeights returns the sensitivity error weight vectors at the
current time. These are the reciprocals of the Wi of (2.7) for the sensitivity variables.

Arguments ida mem (void *) pointer to the idas memory block.

eSweight (N Vector S) pointer to the array of error weight vectors.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate memory for eweightS.

F2003 Name FIDAGetSensErrWeights

IDAGetSensNumNonlinSolvIters

Call flag = IDAGetSensNumNonlinSolvIters(ida mem, &nSniters);

Description The function IDAGetSensNumNonlinSolvIters returns the number of nonlinear itera-
tions performed for sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.

nSniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.
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IDA MEM FAIL The sunnonlinsol module is NULL.

Notes This counter is incremented only if ism was IDA STAGGERED in the call to IDASensInit

(see §5.2.1).

F2003 Name FIDAGetSensNumNonlinSolvIters

IDAGetSensNumNonlinSolvConvFails

Call flag = IDAGetSensNumNonlinSolvConvFails(ida mem, &nSncfails);

Description The function IDAGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was IDA STAGGERED in the call to IDASensInit

(see §5.2.1).

F2003 Name FIDAGetSensNumNonlinSolvConvFails

IDAGetSensNonlinSolvStats

Call flag = IDAGetSensNonlinSolvStats(ida mem, &nSniters, &nSncfails);

Description The function IDAGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nSniters (long int) number of nonlinear iterations performed.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA MEM FAIL The sunnonlinsol module is NULL.

F2003 Name FIDAGetSensNonlinSolvStats

5.2.8.2 Initial condition calculation optional output functions

The sensitivity consistent initial conditions found by idas (after a successful call to IDACalcIC) can
be obtained by calling the following function:

IDAGetSensConsistentIC

Call flag = IDAGetSensConsistentIC(ida mem, yyS0 mod, ypS0 mod);

Description The function IDAGetSensConsistentIC returns the corrected initial conditions calcu-
lated by IDACalcIC for sensitivities variables.

Arguments ida mem (void *) pointer to the idas memory block.

yyS0 mod (N Vector *) a pointer to an array of Ns vectors containing consistent sensi-
tivity vectors.
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ypS0 mod (N Vector *) a pointer to an array of Ns vectors containing consistent sensi-
tivity derivative vectors.

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetSensConsistentIC succeeded.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS The function IDASensInit has not been previously called.

IDA ILL INPUT IDASolve has been already called.

Notes If the consistent sensitivity vectors or consistent derivative vectors are not desired, pass
NULL for the corresponding argument.

The user must allocate space for yyS0 mod and ypS0 mod (if not NULL). !

F2003 Name FIDAGetSensConsistentIC

5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using idas for
forward sensitivity analysis, the user has the option of providing a routine that calculates the residual
of the sensitivity equations (2.12).

By default, idas uses difference quotient approximation routines for the residual of the sensitivity
equations. However, idas allows the option for user-defined sensitivity residual routines (which also
provides a mechanism for interfacing idas to routines generated by automatic differentiation).

The user may provide the residuals of the sensitivity equations (2.12), for all sensitivity parameters
at once, through a function of type IDASensResFn defined by:

IDASensResFn

Definition typedef int (*IDASensResFn)(int Ns, realtype t,

N Vector yy, N Vector yp, N Vector resval,

N Vector *yS, N Vector *ypS,

N Vector *resvalS, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the sensitivity residual for all sensitivity equations. It must com-
pute the vectors (∂F/∂y)si(t)+(∂F/∂ẏ)ṡi(t)+(∂F/∂pi) and store them in resvalS[i].

Arguments Ns is the number of sensitivities.

t is the current value of the independent variable.

yy is the current value of the state vector, y(t).

yp is the current value of ẏ(t).

resval contains the current value F of the original DAE residual.

yS contains the current values of the sensitivities si.

ypS contains the current values of the sensitivity derivatives ṡi.

resvalS contains the output sensitivity residual vectors. Memory allocation for
resvalS is handled within idas.

user data is a pointer to user data.

tmp1

tmp2

tmp3 are N Vectors of length N which can be used as temporary storage.

Return value An IDASensResFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA SRES FAIL is returned).

Notes There is one situation in which recovery is not possible even if IDASensResFn function
returns a recoverable error flag. That is when this occurs at the very first call to the
IDASensResFn, in which case idas returns IDA FIRST RES FAIL.
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5.4 Integration of quadrature equations depending on forward
sensitivities

idas provides support for integration of quadrature equations that depends not only on the state
variables but also on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation.
Steps that are unchanged from the skeleton program presented in §5.1 are grayed out. See also §4.7.

1. Initialize parallel or multi-threaded environment

2. Set problem dimensions, etc.

3. Set vectors of initial values

4. Create idas object

5. Initialize idas solver

6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object

9. Set linear solver optional inputs

10. Attach linear solver module

11. Set optional inputs

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Initialize sensitivity-independent quadrature problem

16. Define the sensitivity problem

17. Set sensitivity initial conditions

18. Activate sensitivity calculations

19. Set sensitivity tolerances

20. Set sensitivity analysis optional inputs

21. Create sensitivity nonlinear solver object

22. Attach the sensitvity nonlinear solver module

23. Set sensitivity nonlinear solver optional inputs

24. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

25. Initialize sensitivity-dependent quadrature integration

Call IDAQuadSensInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §5.4.1 for details.
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26. Set optional inputs for sensitivity-dependent quadrature integration

Call IDASetQuadSensErrCon to indicate whether or not quadrature variables should be used in
the step size control mechanism. If so, one of the IDAQuadSens*tolerances functions must be
called to specify the integration tolerances for quadrature variables. See §5.4.4 for details.

27. Advance solution in time

28. Extract sensitivity-dependent quadrature variables

Call IDAGetQuadSens, IDAGetQuadSens1, IDAGetQuadSensDky or IDAGetQuadSensDky1 to obtain
the values of the quadrature variables or their derivatives at the current time. See §5.4.3 for details.

29. Get optional outputs

30. Extract sensitivity solution

31. Get sensitivity-dependent quadrature optional outputs

Call IDAGetQuadSens* functions to obtain optional output related to the integration of sensitivity-
dependent quadratures. See §5.4.5 for details.

32. Deallocate memory for solutions vector

33. Deallocate memory for sensitivity vectors

34. Deallocate memory for sensitivity-dependent quadrature variables

35. Free solver memory

36. Free nonlinear solver memory

37. Free vector specification memory

38. Free linear solver and matrix memory

39. Finalize MPI, if used

Note: IDAQuadSensInit (step 25 above) can be called and quadrature-related optional inputs (step
26 above) can be set, anywhere between steps 16 and 27.

5.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function IDAQuadSensInit activates integration of quadrature equations depending on sensitiv-
ities and allocates internal memory related to these calculations. If rhsQS is input as NULL, then
idas uses an internal function that computes difference quotient approximations to the functions
q̄i = (∂q/∂y)si + (∂q/∂ẏ)ṡi + ∂q/∂pi, in the notation of (2.10). The form of the call to this function
is as follows:

IDAQuadSensInit

Call flag = IDAQuadSensInit(ida mem, rhsQS, yQS0);

Description The function IDAQuadSensInit provides required problem specifications, allocates in-
ternal memory, and initializes quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

rhsQS (IDAQuadSensRhsFn) is the C function which computes fQS , the right-hand
side of the sensitivity-dependent quadrature equations (for full details see
§5.4.6).

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadratures.
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Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadSensInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA MEM FAIL A memory allocation request failed.

IDA NO SENS The sensitivities were not initialized by a prior call to IDASensInit.

IDA ILL INPUT The parameter yQS0 is NULL.

Notes Before calling IDAQuadSensInit, the user must enable the sensitivites by calling!

IDASensInit.

If an error occurred, IDAQuadSensInit also sends an error message to the error handler
function.

F2003 Name FIDAQuadSensInit

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If IDAQuadSensSVtolerances is called: lenrw = lenrw +NqNs

and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If IDAQuadSensSVtolerances is called: leniw = leniw +NqNs

The function IDAQuadSensReInit, useful during the solution of a sequence of problems of same
size, reinitializes the quadrature related internal memory and must follow a call to IDAQuadSensInit.
The number Nq of quadratures as well as the number Ns of sensitivities are assumed to be unchanged
from the prior call to IDAQuadSensInit. The call to the IDAQuadSensReInit function has the form:

IDAQuadSensReInit

Call flag = IDAQuadSensReInit(ida mem, yQS0);

Description The function IDAQuadSensReInit provides required problem specifications and reini-
tializes the sensitivity-dependent quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadratures.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadSensReInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA NO SENS Memory space for the sensitivity calculation was not allocated by a
prior call to IDASensInit.

IDA NO QUADSENS Memory space for the sensitivity quadratures integration was not
allocated by a prior call to IDAQuadSensInit.

IDA ILL INPUT The parameter yQS0 is NULL.

Notes If an error occurred, IDAQuadSensReInit also sends an error message to the error
handler function.

F2003 Name FIDAQuadSensReInit
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IDAQuadSensFree

Call IDAQuadSensFree(ida mem);

Description The function IDAQuadSensFree frees the memory allocated for sensitivity quadrature
integration.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAQuadSensFree has no return value.

Notes In general, IDAQuadSensFree need not be called by the user as it is called automatically
by IDAFree.

F2003 Name FIDAQuadSensFree

5.4.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the
same as in §4.5.7. However, in this case the return value flag can also be one of the following:
IDA QSRHS FAIL The sensitivity quadrature right-hand side function failed in an unrecoverable

manner.

IDA FIRST QSRHS ERR The sensitivity quadrature right-hand side function failed at the first call.

IDA REP QSRHS ERR Convergence test failures occurred too many times due to repeated recover-
able errors in the quadrature right-hand side function. The IDA REP RES ERR

will also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).

5.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to IDAQuadSensInit, or reinitial-
ized by a call to IDAQuadSensReInit, then idas computes a solution, sensitivities, and quadratures
depending on sensitivities at time t. However, IDASolve will still return only the solutions y and ẏ.
Sensitivity-dependent quadratures can be obtained using one of the following functions:

IDAGetQuadSens

Call flag = IDAGetQuadSens(ida mem, &tret, yQS);

Description The function IDAGetQuadSens returns the quadrature sensitivity solution vectors after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

yQS (N Vector *) array of Ns computed sensitivity-dependent quadrature vectors.
This array of vectors must be allocated by the user.

Return value The return value flag of IDAGetQuadSens is one of:

IDA SUCCESS IDAGetQuadSens was successful.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD DKY yQS or one of the yQS[i] is NULL.

F2003 Name FIDAGetQuadSens

The function IDAGetQuadSensDky computes the k-th derivatives of the interpolating polynomials for
the sensitivity-dependent quadrature variables at time t. This function is called by IDAGetQuadSens

with k = 0, but may also be called directly by the user.



124 Using IDAS for Forward Sensitivity Analysis

IDAGetQuadSensDky

Call flag = IDAGetQuadSensDky(ida mem, t, k, dkyQS);

Description The function IDAGetQuadSensDky returns derivatives of the quadrature sensitivities
solution vectors after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) the time at which information is requested. The time t must fall
within the interval defined by the last successful step taken by idas.

k (int) order of the requested derivative. k must be in the range 0, 1, ..., klast
where klast is the method order of the last successful step.

dkyQS (N Vector *) array of Ns vectors containing the derivatives. This vector array
must be allocated by the user.

Return value The return value flag of IDAGetQuadSensDky is one of:

IDA SUCCESS IDAGetQuadSensDky succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD DKY dkyQS or one of the vectors dkyQS[i] is NULL.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

F2003 Name FIDAGetQuadSensDky

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetQuadSens1 and IDAGetQuadSensDky1, defined as follows:

IDAGetQuadSens1

Call flag = IDAGetQuadSens1(ida mem, &tret, is, yQS);

Description The function IDAGetQuadSens1 returns the is-th sensitivity of quadratures after a
successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).

yQS (N Vector) the computed sensitivity-dependent quadrature vector. This vector
must be allocated by the user.

Return value The return value flag of IDAGetQuadSens1 is one of:

IDA SUCCESS IDAGetQuadSens1 was successful.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD IS The index is is not in the allowed range.

IDA BAD DKY yQS is NULL.

F2003 Name FIDAGetQuadSens1

IDAGetQuadSensDky1

Call flag = IDAGetQuadSensDky1(ida mem, t, k, is, dkyQS);

Description The function IDAGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from IDASolve.
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Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivative. k must be in the range 0, 1, ..., klast where klast is
the method order of the last successful step.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyQS (N Vector) the vector containing the derivative. The space for dkyQS must be
allocated by the user.

Return value The return value flag of IDAGetQuadSensDky1 is one of:

IDA SUCCESS IDAGetQuadDky1 succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD DKY dkyQS is NULL.

IDA BAD IS The index is is not in the allowed range.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

F2003 Name FIDAGetQuadSensDky1

5.4.4 Optional inputs for sensitivity-dependent quadrature integration

idas provides the following optional input functions to control the integration of sensitivity-dependent
quadrature equations.

IDASetQuadSensErrCon

Call flag = IDASetQuadSensErrCon(ida mem, errconQS)

Description The function IDASetQuadSensErrCon specifies whether or not the quadrature variables
are to be used in the local error control mechanism. If they are, the user must specify
the error tolerances for the quadrature variables by calling IDAQuadSensSStolerances,
IDAQuadSensSVtolerances, or IDAQuadSensEEtolerances.

Arguments ida mem (void *) pointer to the idas memory block.

errconQS (booleantype) specifies whether sensitivity quadrature variables are included
(SUNTRUE) or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes By default, errconQS is set to SUNFALSE.

It is illegal to call IDASetQuadSensErrCon before a call to IDAQuadSensInit. !

F2003 Name FIDASetQuadSensErrCon

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.
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IDAQuadSensSStolerances

Call flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

Description The function IDAQuadSensSStolerances specifies scalar relative and absolute toler-
ances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (realtype*) is a pointer to an array containing the Ns scalar absolute error
tolerances.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA ILL INPUT One of the input tolerances was negative.

F2003 Name FIDAQuadSensSStolerances

IDAQuadSensSVtolerances

Call flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

Description The function IDAQuadSensSVtolerances specifies scalar relative and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (N Vector*) is an array of Ns variables of type N Vector. The N Vector from
abstolS[is] specifies the vector tolerances for is-th quadrature sensitivity.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA ILL INPUT One of the input tolerances was negative.

F2003 Name FIDAQuadSensSVtolerances

IDAQuadSensEEtolerances

Call flag = IDAQuadSensEEtolerances(ida mem);

Description The function IDAQuadSensEEtolerances specifies that the tolerances for the sensitivity-
dependent quadratures should be estimated from those provided for the pure quadrature
variables.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.



5.4 Integration of quadrature equations depending on forward sensitivities 127

Notes When IDAQuadSensEEtolerances is used, before calling IDASolve, integration of pure
quadratures must be initialized (see 4.7.1) and tolerances for pure quadratures must be
also specified (see 4.7.4).

F2003 Name FIDAQuadSensEEtolerances

5.4.5 Optional outputs for sensitivity-dependent quadrature integration

idas provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

IDAGetQuadSensNumRhsEvals

Call flag = IDAGetQuadSensNumRhsEvals(ida mem, &nrhsQSevals);

Description The function IDAGetQuadSensNumRhsEvals returns the number of calls made to the
user’s quadrature right-hand side function.

Arguments ida mem (void *) pointer to the idas memory block.

nrhsQSevals (long int) number of calls made to the user’s rhsQS function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

F2003 Name FIDAGetQuadSensNumRhsEvals

IDAGetQuadSensNumErrTestFails

Call flag = IDAGetQuadSensNumErrTestFails(ida mem, &nQSetfails);

Description The function IDAGetQuadSensNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

F2003 Name FIDAGetQuadSensNumErrTestFails

IDAGetQuadSensErrWeights

Call flag = IDAGetQuadSensErrWeights(ida mem, eQSweight);

Description The function IDAGetQuadSensErrWeights returns the quadrature error weights at the
current time.

Arguments ida mem (void *) pointer to the idas memory block.

eQSweight (N Vector *) array of quadrature error weight vectors at the current time.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
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Notes The user must allocate memory for eQSweight. !

If quadratures were not included in the error control mechanism (through a call to
IDASetQuadSensErrCon with errconQS=SUNTRUE), IDAGetQuadSensErrWeights does
not set the eQSweight vector.

F2003 Name FIDAGetQuadSensErrWeights

IDAGetQuadSensStats

Call flag = IDAGetQuadSensStats(ida mem, &nrhsQSevals, &nQSetfails);

Description The function IDAGetQuadSensStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nrhsQSevals (long int) number of calls to the user’s rhsQS function.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfully set.

IDA MEM NULL the ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

F2003 Name FIDAGetQuadSensStats

5.4.6 User-supplied function for sensitivity-dependent quadrature integra-
tion

For the integration of sensitivity-dependent quadrature equations, the user must provide a function
that defines the right-hand side of the sensitivity quadrature equations. For sensitivities of quadratures
(2.10) with integrands q, the appropriate right-hand side functions are given by q̄i = (∂q/∂y)si +
(∂q/∂ẏ)ṡi + ∂q/∂pi. This user function must be of type IDAQuadSensRhsFn, defined as follows:

IDAQuadSensRhsFn

Definition typedef int (*IDAQuadSensRhsFn)(int Ns, realtype t, N Vector yy,

N Vector yp, N Vector *yyS, N Vector *ypS,

N Vector rrQ, N Vector *rhsvalQS,

void *user data, N Vector tmp1,

N Vector tmp2, N Vector tmp3)

Purpose This function computes the sensitivity quadrature equation right-hand side for a given
value of the independent variable t and state vector y.

Arguments Ns is the number of sensitivity vectors.

t is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of the dependent variable vector, ẏ(t).

yyS is an array of Ns variables of type N Vector containing the dependent sen-
sitivity vectors si.

ypS is an array of Ns variables of type N Vector containing the dependent sen-
sitivity derivatives ṡi.

rrQ is the current value of the quadrature right-hand side q.

rhsvalQS contains the Ns output vectors.

user data is the user data pointer passed to IDASetUserData.

tmp1

tmp2
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tmp3 are N Vectors which can be used as temporary storage.

Return value An IDAQuadSensRhsFn should return 0 if successful, a positive value if a recoverable
error occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA QRHS FAIL is returned).

Notes Allocation of memory for rhsvalQS is automatically handled within idas.

Both yy and yp are of type N Vector and both yyS and ypS are pointers to an array
containing Ns vectors of type N Vector. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each nvector
implementation). For the sake of computational efficiency, the vector functions in the
two nvector implementations provided with idas do not perform any consistency
checks with respect to their N Vector arguments (see §9.3 and §9.4).

There is one situation in which recovery is not possible even if IDAQuadSensRhsFn

function returns a recoverable error flag. That is when this occurs at the very first call
to the IDAQuadSensRhsFn, in which case idas returns IDA FIRST QSRHS ERR).

5.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of idas
may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection.

The short explanation of this behavior is that the step size selection implemented by the error
control mechanism in idas is based on the magnitude of the correction calculated by the nonlinear
solver. As mentioned in §5.2.1, even with partial error control selected in the call to IDASensInit,
the sensitivity variables are included in the convergence tests of the nonlinear solver.

When using the simultaneous corrector method (§2.5), the nonlinear system that is solved at each
step involves both the state and sensitivity equations. In this case, it is easy to see how the sensitivity
variables may affect the convergence rate of the nonlinear solver and therefore the step size selection.
The case of the staggered corrector approach is more subtle. The sensitivity variables at a given
step are computed only once the solver for the nonlinear state equations has converged. However, if
the nonlinear system corresponding to the sensitivity equations has convergence problems, idas will
attempt to improve the initial guess by reducing the step size in order to provide a better prediction
of the sensitivity variables. Moreover, even if there are no convergence failures in the solution of the
sensitivity system, idas may trigger a call to the linear solver’s setup routine which typically involves
reevaluation of Jacobian information (Jacobian approximation in the case of idadense and idaband,
or preconditioner data in the case of the Krylov solvers). The new Jacobian information will be used
by subsequent calls to the nonlinear solver for the state equations and, in this way, potentially affect
the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods, however, these situations can be identified by carefully monitoring the diagnostic information
provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system
of DAEs on the step size selection (through the mechanisms described above) is problem-dependent
and can therefore lead to either an increase or decrease of the total number of steps that idas takes to
complete the simulation. At first glance, one would expect that the impact of the sensitivity variables,
if any, would be in the direction of increasing the step size and therefore reducing the total number
of steps. The argument for this is that the presence of the sensitivity variables in the convergence
test of the nonlinear solver can only lead to additional iterations (and therefore a smaller iteration
error), or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian
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information), both of which will lead to larger steps being taken by idas. However, this is true only
locally. Overall, a larger integration step taken at a given time may lead to step size reductions at
later times, due to either nonlinear solver convergence failures or error test failures.



Chapter 6

Using IDAS for Adjoint Sensitivity
Analysis

This chapter describes the use of idas to compute sensitivities of derived functions using adjoint sensi-
tivity analysis. As mentioned before, the adjoint sensitivity module of idas provides the infrastructure
for integrating backward in time any system of DAEs that depends on the solution of the original IVP,
by providing various interfaces to the main idas integrator, as well as several supporting user-callable
functions. For this reason, in the following sections we refer to the backward problem and not to the
adjoint problem when discussing details relevant to the DAEs that are integrated backward in time.
The backward problem can be the adjoint problem (2.20) or (2.25), and can be augmented with some
quadrature differential equations.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in Chapter 4.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of idas. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §4.4, most steps are independent of the nvector,
sunmatrix, sunlinsol, and sunnonlinsol implementations used. For the steps that are not, refer
to Chapters 9, 10, 11, and 12 for the specific name of the function to be called or macro to be
referenced.

Steps that are unchanged from the skeleton programs presented in §4.4, §5.1, and §5.4, are grayed
out.

1. Include necessary header files

The idas.h header file also defines additional types, constants, and function prototypes for the
adjoint sensitivity module user-callable functions. In addition, the main program should include an
nvector implementation header file (for the particular implementation used) and, if a nonlinear
solver requiring a linear solver (e.g., the default Newton iteration) will be used, the header file of
the desired linear solver module.

2. Initialize parallel or multi-threaded environment

Forward problem

3. Set problem dimensions etc. for the forward problem
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4. Set initial conditions for the forward problem

5. Create idas object for the forward problem

6. Initialize idas solver for the forward problem

7. Specify integration tolerances for forward problem

8. Set optional inputs for the forward problem

9. Create matrix object for the forward problem

10. Create linear solver object for the forward problem

11. Set linear solver optional inputs for the forward problem

12. Attach linear solver module for the forward problem

13. Create nonlinear solver module for the forward problem

14. Attach nonlinear solver module for the forward problem

15. Set nonlinear solver optional inputs for the forward problem

16. Initialize quadrature problem or problems for forward problems, using IDAQuadInit

and/or IDAQuadSensInit.

17. Initialize forward sensitivity problem

18. Specify rootfinding

19. Allocate space for the adjoint computation

Call IDAAdjInit() to allocate memory for the combined forward-backward problem (see §6.2.1
for details). This call requires Nd, the number of steps between two consecutive checkpoints.
IDAAdjInit also specifies the type of interpolation used (see §2.6.3).

20. Integrate forward problem

Call IDASolveF, a wrapper for the idas main integration function IDASolve, either in IDA NORMAL

mode to the time tout or in IDA ONE STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.3)). The final value of tret is then the maximum allowable
value for the endpoint T of the backward problem.

Backward problem(s)

21. Set problem dimensions etc. for the backward problem

This generally includes NB, the number of variables in the backward problem and possibly the
local vector length NBlocal.

22. Set initial values for the backward problem

Set the endpoint time tB0 = T , and set the corresponding vectors yB0 and ypB0 at which the
backward problem starts.

23. Create the backward problem

Call IDACreateB, a wrapper for IDACreate, to create the idas memory block for the new backward
problem. Unlike IDACreate, the function IDACreateB does not return a pointer to the newly
created memory block (see §6.2.4). Instead, this pointer is attached to the internal adjoint memory
block (created by IDAAdjInit) and returns an identifier called which that the user must later
specify in any actions on the newly created backward problem.
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24. Allocate memory for the backward problem

Call IDAInitB (or IDAInitBS, when the backward problem depends on the forward sensitivi-
ties). The two functions are actually wrappers for IDAInit and allocate internal memory, specify
problem data, and initialize idas at tB0 for the backward problem (see §6.2.4).

25. Specify integration tolerances for backward problem

Call IDASStolerancesB(...) or IDASVtolerancesB(...) to specify a scalar relative tolerance
and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances,
respectively. The functions are wrappers for IDASStolerances(...) and IDASVtolerances(...)

but they require an extra argument which, the identifier of the backward problem returned by
IDACreateB. See §6.2.5 for more information.

26. Set optional inputs for the backward problem

Call IDASet*B functions to change from their default values any optional inputs that control the
behavior of idas. Unlike their counterparts for the forward problem, these functions take an extra
argument which, the identifier of the backward problem returned by IDACreateB (see §6.2.10).

27. Create matrix object for the backward problem

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration) and
the linear solver will be a direct linear solver, then a template Jacobian matrix must be created by
calling the appropriate constructor function defined by the particular sunmatrix implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

Note also that it is not required to use the same matrix type for both the forward and the backward
problems.

28. Create linear solver object for the backward problem

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then the
desired linear solver object for the backward problem must be created by calling the appropriate
constructor function defined by the particular sunlinsol implementation.

Note that it is not required to use the same linear solver module for both the forward and the
backward problems; for example, the forward problem could be solved with the sunlinsol dense
linear solver module and the backward problem with sunlinsol spgmr linear solver module.

29. Set linear solver interface optional inputs for the backward problem

Call IDASet*B functions to change optional inputs specific to the linear solver interface. See
§6.2.10 for details.

30. Attach linear solver module for the backward problem

If a nonlinear solver requiring a linear solver is chosen for the backward problem (e.g., the default
Newton iteration), then initialize the idals linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with the following call (for details see §4.5.3):

ier = IDASetLinearSolverB(...);

31. Create nonlinear solver object for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then create the desired nonlinear
solver object by calling the appropriate constructor function defined by the particular sunnon-
linsol implementation e.g., NLSB = SUNNonlinSol ***(...); where *** is the name of the
nonlinear solver (see Chapter 12 for details).

32. Attach nonlinear solver module for the backward problem (optional)
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If using a non-default nonlinear solver for the backward problem, then initialize the nonlinear
solver interface by attaching the nonlinear solver object by calling
ier = IDASetNonlinearSolverB(idaode mem, NLSB); (see §6.2.7 for details).

33. Initialize quadrature calculation

If additional quadrature equations must be evaluated, call IDAQuadInitB or IDAQuadInitBS (if
quadrature depends also on the forward sensitivities) as shown in §6.2.12.1. These functions are
wrappers around IDAQuadInit and can be used to initialize and allocate memory for quadrature
integration. Optionally, call IDASetQuad*B functions to change from their default values optional
inputs that control the integration of quadratures during the backward phase.

34. Integrate backward problem

Call IDASolveB, a second wrapper around the idas main integration function IDASolve, to inte-
grate the backward problem from tB0 (see §6.2.9). This function can be called either in IDA NORMAL

or IDA ONE STEP mode. Typically, IDASolveB will be called in IDA NORMAL mode with an end time
equal to the initial time t0 of the forward problem.

35. Extract quadrature variables

If applicable, call IDAGetQuadB, a wrapper around IDAGetQuad, to extract the values of the quadra-
ture variables at the time returned by the last call to IDASolveB. See §6.2.12.2.

36. Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to IDAFree to free the idas
memory block for the forward problem. If one or more additional adjoint sensitivity analyses are
to be done for this problem, a call to IDAAdjFree (see §6.2.1) may be made to free and deallocate
the memory allocated for the backward problems, followed by a call to IDAAdjInit.

37. Free the nonlinear solver memory for the forward and backward problems

38. Free linear solver and matrix memory for the forward and backward problems

39. Finalize MPI, if used

The above user interface to the adjoint sensitivity module in idas was motivated by the desire to
keep it as close as possible in look and feel to the one for DAE IVP integration. Note that if steps
(21)-(35) are not present, a program with the above structure will have the same functionality as one
described in §4.4 for integration of DAEs, albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps
(21)-(35) above for each successive backward problem. In the process, each call to IDACreateB creates
a new value of the identifier which.

6.2 User-callable functions for adjoint sensitivity analysis

6.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to IDASolveF, memory for the
combined forward-backward problem must be allocated by a call to the function IDAAdjInit. The
form of the call to this function is

IDAAdjInit

Call flag = IDAAdjInit(ida mem, Nd, interpType);
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Description The function IDAAdjInit updates idas memory block by allocating the internal memory
needed for backward integration. Space is allocated for the Nd = Nd interpolation data
points, and a linked list of checkpoints is initialized.

Arguments ida mem (void *) is the pointer to the idas memory block returned by a previous
call to IDACreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be IDA POLYNOMIAL

or IDA HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §2.6.3).

Return value The return value flag (of type int) is one of:

IDA SUCCESS IDAAdjInit was successful.

IDA MEM FAIL A memory allocation request has failed.

IDA MEM NULL ida mem was NULL.

IDA ILL INPUT One of the parameters was invalid: Nd was not positive or interpType
is not one of the IDA POLYNOMIAL or IDA HERMITE.

Notes The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. IDAAdjInit attempts to allocate
space for (2Nd+3) variables of type N Vector.

If an error occurred, IDAAdjInit also sends a message to the error handler function.

F2003 Name FIDAAdjInit

IDAAdjReInit

Call flag = IDAAdjReInit(ida mem);

Description The function IDAAdjReInit reinitializes the idas memory block for ASA, assuming
that the number of steps between check points and the type of interpolation remain
unchanged.

Arguments ida mem (void *) is the pointer to the idas memory block returned by a previous call
to IDACreate.

Return value The return value flag (of type int) is one of:

IDA SUCCESS IDAAdjReInit was successful.

IDA MEM NULL ida mem was NULL.

IDA NO ADJ The function IDAAdjInit was not previously called.

Notes The list of check points (and associated memory) is deleted.

The list of backward problems is kept. However, new backward problems can be added
to this list by calling IDACreateB. If a new list of backward problems is also needed, then
free the adjoint memory (by calling IDAAdjFree) and reinitialize ASA with IDAAdjInit.

The idas memory for the forward and backward problems can be reinitialized separately
by calling IDAReInit and IDAReInitB, respectively.

F2003 Name FIDAAdjReInit

IDAAdjFree

Call IDAAdjFree(ida mem);

Description The function IDAAdjFree frees the memory related to backward integration allocated
by a previous call to IDAAdjInit.
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Arguments The only argument is the idas memory block pointer returned by a previous call to
IDACreate.

Return value The function IDAAdjFree has no return value.

Notes This function frees all memory allocated by IDAAdjInit. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as
the idas memory for the backward integration phase.

Unless one or more further calls to IDAAdjInit are to be made, IDAAdjFree should not
be called by the user, as it is invoked automatically by IDAFree.

F2003 Name FIDAAdjFree

6.2.2 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of
the forward sensitivities by calling the following function:

IDAAdjSetNoSensi

Call flag = IDAAdjSetNoSensi(ida mem);

Description The function IDAAdjSetNoSensi instructs IDASolveF not to save checkpointing data
for forward sensitivities any more.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return flag (of type int) is one of:

IDA SUCCESS The call to IDACreateB was successful.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

F2003 Name FIDAAdjSetNoSensi

6.2.3 Forward integration function

The function IDASolveF is very similar to the idas function IDASolve (see §4.5.7) in that it integrates
the solution of the forward problem and returns the solution (y, ẏ). At the same time, however,
IDASolveF stores checkpoint data every Nd integration steps. IDASolveF can be called repeatedly
by the user. Note that IDASolveF is used only for the forward integration pass within an Adjoint
Sensitivity Analysis. It is not for use in Forward Sensitivity Analysis; for that, see Chapter 5. The
call to this function has the form

IDASolveF

Call flag = IDASolveF(ida mem, tout, &tret, yret, ypret, itask, &ncheck);

Description The function IDASolveF integrates the forward problem over an interval in t and saves
checkpointing data.

Arguments ida mem (void *) pointer to the idas memory block.

tout (realtype) the next time at which a computed solution is desired.

tret (realtype) the time reached by the solver (output).

yret (N Vector) the computed solution vector y.

ypret (N Vector) the computed solution vector ẏ.

itask (int) a flag indicating the job of the solver for the next step. The IDA NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to
return an approximate value of y(tout) and ẏ(tout). The IDA ONE STEP option
tells the solver to take just one internal step and return the solution at the
point reached by that step.
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ncheck (int) the number of (internal) checkpoints stored so far.

Return value On return, IDASolveF returns vectors yret, ypret and a corresponding independent
variable value t = tret, such that yret is the computed value of y(t) and ypret the
value of ẏ(t). Additionally, it returns in ncheck the number of internal checkpoints
saved; the total number of checkpoint intervals is ncheck+1. The return value flag (of
type int) will be one of the following. For more details see §4.5.7.

IDA SUCCESS IDASolveF succeeded.

IDA TSTOP RETURN IDASolveF succeeded by reaching the optional stopping point.

IDA ROOT RETURN IDASolveF succeeded and found one or more roots. In this case,
tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which gi were found to have a root.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA ILL INPUT One of the inputs to IDASolveF is illegal.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAILURE Error test failures occurred too many times during one internal
time step or occurred with |h| = hmin.

IDA CONV FAILURE Convergence test failures occurred too many times during one in-
ternal time step or occurred with |h| = hmin.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed (in an attempt to allocate
space for a new checkpoint).

Notes All failure return values are negative and therefore a test flag< 0 will trap all IDASolveF
failures.

At this time, IDASolveF stores checkpoint information in memory only. Future versions
will provide for a safeguard option of dumping checkpoint data into a temporary file as
needed. The data stored at each checkpoint is basically a snapshot of the idas internal
memory block and contains enough information to restart the integration from that
time and to proceed with the same step size and method order sequence as during the
forward integration.

In addition, IDASolveF also stores interpolation data between consecutive checkpoints
so that, at the end of this first forward integration phase, interpolation information is
already available from the last checkpoint forward. In particular, if no checkpoints were
necessary, there is no need for the second forward integration phase.

It is illegal to change the integration tolerances between consecutive calls to IDASolveF, !

as this information is not captured in the checkpoint data.

F2003 Name FIDASolveF

6.2.4 Backward problem initialization functions

The functions IDACreateB and IDAInitB (or IDAInitBS) must be called in the order listed. They
instantiate an idas solver object, provide problem and solution specifications, and allocate internal
memory for the backward problem.
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IDACreateB

Call flag = IDACreateB(ida mem, &which);

Description The function IDACreateB instantiates an idas solver object for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) contains the identifier assigned by idas for the newly created backward
problem. Any call to IDA*B functions requires such an identifier.

Return value The return flag (of type int) is one of:

IDA SUCCESS The call to IDACreateB was successful.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed.

F2003 Name FIDACreateB

There are two initialization functions for the backward problem – one for the case when the
backward problem does not depend on the forward sensitivities, and one for the case when it does.
These two functions are described next.

The function IDAInitB initializes the backward problem when it does not depend on the for-
ward sensitivities. It is essentially wrapper for IDAInit with some particularization for backward
integration, as described below.

IDAInitB

Call flag = IDAInitB(ida mem, which, resB, tB0, yB0, ypB0);

Description The function IDAInitB provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

resB (IDAResFnB) is the C function which computes fB, the residual of the back-
ward DAE problem. This function has the form resB(t, y, yp, yB, ypB,

resvalB, user dataB) (for full details see §6.3.1).

tB0 (realtype) specifies the endpoint T where final conditions are provided for the
backward problem, normally equal to the endpoint of the forward integration.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.

ypB0 (N Vector) is the initial derivative value (at t = tB0) of the backward solution.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInitB was successful.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA BAD TB0 The final time tB0 was outside the interval over which the forward
problem was solved.

IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,
ypB0, resB was NULL.

Notes The memory allocated by IDAInitB is deallocated by the function IDAAdjFree.

F2003 Name FIDAInitB

For the case when backward problem also depends on the forward sensitivities, user must call
IDAInitBS instead of IDAInitB. Only the third argument of each function differs between these
functions.
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IDAInitBS

Call flag = IDAInitBS(ida mem, which, resBS, tB0, yB0, ypB0);

Description The function IDAInitBS provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

resBS (IDAResFnBS) is the C function which computes fB, the residual or the back-
ward DAE problem. This function has the form resBS(t, y, yp, yS, ypS,

yB, ypB, resvalB, user dataB) (for full details see §6.3.2).

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.

ypB0 (N Vector) is the initial derivative value (at t = tB0) of the backward solution.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInitB was successful.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA BAD TB0 The final time tB0 was outside the interval over which the forward
problem was solved.

IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,
ypB0, resB was NULL, or sensitivities were not active during the forward
integration.

Notes The memory allocated by IDAInitBS is deallocated by the function IDAAdjFree.

F2003 Name FIDAInitBS

The function IDAReInitB reinitializes idas for the solution of a series of backward problems, each
identified by a value of the parameter which. IDAReInitB is essentially a wrapper for IDAReInit, and
so all details given for IDAReInit in §4.5.11 apply here. Also, IDAReInitB can be called to reinitialize
a backward problem even if it has been initialized with the sensitivity-dependent version IDAInitBS.
Before calling IDAReInitB for a new backward problem, call any desired solution extraction functions
IDAGet** associated with the previous backward problem. The call to the IDAReInitB function has
the form

IDAReInitB

Call flag = IDAReInitB(ida mem, which, tB0, yB0, ypB0)

Description The function IDAReInitB reinitializes an idas backward problem.

Arguments ida mem (void *) pointer to idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.

ypB0 (N Vector) is the initial derivative value (at t = tB0) of the backward solution.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInitB was successful.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA MEM NULL The ida mem memory block pointer was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.
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IDA BAD TB0 The final time tB0 is outside the interval over which the forward problem
was solved.

IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,
ypB0 was NULL.

F2003 Name FIDAReInitB

6.2.5 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward
problem. Note that this call must be made after the call to IDAInitB or IDAInitBS.

IDASStolerancesB

Call flag = IDASStolerances(ida mem, which, reltolB, abstolB);

Description The function IDASStolerancesB specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

reltolB (realtype) is the scalar relative error tolerance.

abstolB (realtype) is the scalar absolute error tolerance.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerancesB was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA ILL INPUT One of the input tolerances was negative.

F2003 Name FIDASStolerancesB

IDASVtolerancesB

Call flag = IDASVtolerancesB(ida mem, which, reltolB, abstolB);

Description The function IDASVtolerancesB specifies scalar relative tolerance and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerancesB was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the DAE state vector y.

F2003 Name FIDASVtolerancesB
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6.2.6 Linear solver initialization functions for backward problem

All idas linear solver modules available for forward problems are available for the backward problem.
They should be created as for the forward problem then attached to the memory structure for the
backward problem using the following function.

IDASetLinearSolverB

Call flag = IDASetLinearSolverB(ida mem, which, LS, A);

Description The function IDASetLinearSolverB attaches a generic sunlinsol object LS and cor-
responding template Jacobian sunmatrix object A (if applicable) to idas, initializing
the idals linear solver interface for solution of the backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) represents the identifier of the backward problem returned by IDACreateB.

LS (SUNLinearSolver) sunlinsol object to use for solving linear systems for the
backward problem.

A (SUNMatrix) sunmatrix object for used as a template for the Jacobian for
the backward problem (or NULL if not applicable).

Return value The return value flag (of type int) is one of

IDALS SUCCESS The idals initialization was successful.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS ILL INPUT The idals interface is not compatible with the LS or A input objects
or is incompatible with the current nvector module.

IDALS MEM FAIL A memory allocation request failed.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix A will be used
in the solve process, so if additional storage is required within the sunmatrix object
(e.g. for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular sunmatrix type in Chapter
10 for further information).

The previous routines IDADlsSetLinearSolverB and IDASpilsSetLinearSolverB are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

F2003 Name FIDASetLinearSolverB

6.2.7 Nonlinear solver initialization functions for backward problem

As with the forward problem idas uses the sunnonlinsol implementation of Newton’s method defined
by the sunnonlinsol newton module (see §12.3) by default.

To specify a different nonlinear solver in idas for the backward problem, the user’s program must
create a sunnonlinsol object by calling the appropriate constructor routine. The user must then
attach the sunnonlinsol object to idas by calling IDASetNonlinearSolverB, as documented below.

When changing the nonlinear solver in idas, IDASetNonlinearSolverB must be called after
IDAInitB. If any calls to IDASolveB have been made, then idas will need to be reinitialized by
calling IDAReInitB to ensure that the nonlinear solver is initialized correctly before any subsequent
calls to IDASolveB.
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IDASetNonlinearSolverB

Call flag = IDASetNonlinearSolverB(ida mem, which, NLS);

Description The function IDASetNonLinearSolverB attaches a sunnonlinsol object (NLS) to idas
for the solution of the backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) represents the identifier of the backward problem returned by
IDACreateB.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear sys-
tems for the backward problem.

Return value The return value flag (of type int) is one of

IDA SUCCESS The nonlinear solver was successfully attached.

IDA MEM NULL The ida mem pointer is NULL.

IDALS NO ADJ The function CVAdjInit has not been previously called.

IDA ILL INPUT The parameter which represented an invalid identifier or the sunnon-
linsol object is NULL, does not implement the required nonlinear solver
operations, is not of the correct type, or the residual function, conver-
gence test function, or maximum number of nonlinear iterations could
not be set.

F2003 Name FIDASetNonlinearSolverB

6.2.8 Initial condition calculation functions for backward problem

idas provides support for calculation of consistent initial conditions for certain backward index-one
problems of semi-implicit form through the functions IDACalcICB and IDACalcICBS. Calling them is
optional. It is only necessary when the initial conditions do not satisfy the adjoint system.

The above functions provide the same functionality for backward problems as IDACalcIC with
parameter icopt = IDA YA YDP INIT provides for forward problems (see §4.5.5): compute the algebraic
components of yB and differential components of ẏB, given the differential components of yB. They
require that the IDASetIdB was previously called to specify the differential and algebraic components.

Both functions require forward solutions at the final time tB0. IDACalcICBS also needs forward
sensitivities at the final time tB0.

IDACalcICB

Call flag = IDACalcICB(ida mem, which, tBout1, N Vector yfin, N Vector ypfin);

Description The function IDACalcICB corrects the initial values yB0 and ypB0 at time tB0 for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) is the identifier of the backward problem.

tBout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolveB). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

yfin (N Vector) the forward solution at the final time tB0.

ypfin (N Vector) the forward solution derivative at the final time tB0.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.5). However IDACalcICB can also return one of the following:

IDA NO ADJ IDAAdjInit has not been previously called.

IDA ILL INPUT Parameter which represented an invalid identifier.
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Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICB failures.

Note that IDACalcICB will correct the values of yB(tB0) and ẏB(tB0) which were
specified in the previous call to IDAInitB or IDAReInitB. To obtain the corrected values,
call IDAGetconsistentICB (see §6.2.11.2).
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In the case where the backward problem also depends on the forward sensitivities, user must call
the following function to correct the initial conditions:

IDACalcICBS

Call flag = IDACalcICBS(ida mem, which, tBout1, N Vector yfin, N Vector ypfin,

N Vector ySfin, N Vector ypSfin);

Description The function IDACalcICBS corrects the initial values yB0 and ypB0 at time tB0 for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) is the identifier of the backward problem.

tBout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolveB).This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

yfin (N Vector) the forward solution at the final time tB0.

ypfin (N Vector) the forward solution derivative at the final time tB0.

ySfin (N Vector *) a pointer to an array of Ns vectors containing the sensitivities
of the forward solution at the final time tB0.

ypSfin (N Vector *) a pointer to an array of Ns vectors containing the derivatives of
the forward solution sensitivities at the final time tB0.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.5). However IDACalcICBS can also return one of the following:

IDA NO ADJ IDAAdjInit has not been previously called.

IDA ILL INPUT Parameter which represented an invalid identifier, sensitivities were not
active during forward integration, or IDAInitBS (or IDAReInitBS) has
not been previously called.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICBS failures.

Note that IDACalcICBS will correct the values of yB(tB0) and ẏB(tB0) which were
specified in the previous call to IDAInitBS or IDAReInitBS. To obtain the corrected
values, call IDAGetConsistentICB (see §6.2.11.2).
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6.2.9 Backward integration function

The function IDASolveB performs the integration of the backward problem. It is essentially a wrapper
for the idas main integration function IDASolve and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integration
pairs between consecutive checkpoints. In each pair, the first run integrates the original IVP forward
in time and stores interpolation data; the second run integrates the backward problem backward in
time and performs the required interpolation to provide the solution of the IVP to the backward
problem.

The function IDASolveB does not return the solution yB itself. To obtain that, call the function
IDAGetB, which is also described below.
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The IDASolveB function does not support rootfinding, unlike IDASoveF, which supports the finding
of roots of functions of (t, y, ẏ). If rootfinding was performed by IDASolveF, then for the sake of
efficiency, it should be disabled for IDASolveB by first calling IDARootInit with nrtfn = 0.

The call to IDASolveB has the form

IDASolveB

Call flag = IDASolveB(ida mem, tBout, itaskB);

Description The function IDASolveB integrates the backward DAE problem.

Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.

tBout (realtype) the next time at which a computed solution is desired.

itaskB (int) a flag indicating the job of the solver for the next step. The IDA NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user-specified value tBout. The solver then interpolates in order to return
an approximate value of yB(tBout). The IDA ONE STEP option tells the solver
to take just one internal step in the direction of tBout and return.

Return value The return value flag (of type int) will be one of the following. For more details see
§4.5.7.

IDA SUCCESS IDASolveB succeeded.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA NO BCK No backward problem has been added to the list of backward prob-
lems by a call to IDACreateB

IDA NO FWD The function IDASolveF has not been previously called.

IDA ILL INPUT One of the inputs to IDASolveB is illegal.

IDA BAD ITASK The itaskB argument has an illegal value.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tBout.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAILURE Error test failures occurred too many times during one internal
time step.

IDA CONV FAILURE Convergence test failures occurred too many times during one in-
ternal time step.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA SOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA BCKMEM NULL The idas memory for the backward problem was not created with
a call to IDACreateB.

IDA BAD TBOUT The desired output time tBout is outside the interval over which
the forward problem was solved.

IDA REIFWD FAIL Reinitialization of the forward problem failed at the first checkpoint
(corresponding to the initial time of the forward problem).

IDA FWD FAIL An error occurred during the integration of the forward problem.

Notes All failure return values are negative and therefore a test flag< 0 will trap all IDASolveB
failures.

In the case of multiple checkpoints and multiple backward problems, a given call to
IDASolveB in IDA ONE STEP mode may not advance every problem one step, depending
on the relative locations of the current times reached. But repeated calls will eventually
advance all problems to tBout.
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To obtain the solution yB to the backward problem, call the function IDAGetB as follows:
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IDAGetB

Call flag = IDAGetB(ida mem, which, &tret, yB, ypB);

Description The function IDAGetB provides the solution yB of the backward DAE problem.

Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.

which (int) the identifier of the backward problem.

tret (realtype) the time reached by the solver (output).

yB (N Vector) the backward solution at time tret.

ypB (N Vector) the backward solution derivative at time tret.

Return value The return value flag (of type int) will be one of the following.

IDA SUCCESS IDAGetB was successful.

IDA MEM NULL ida mem is NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA ILL INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yB and ypB. !

To obtain the solution associated with a given backward problem at some other time
within the last integration step, first obtain a pointer to the proper idas memory struc-
ture by calling IDAGetAdjIDABmem and then use it to call IDAGetDky.
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6.2.10 Optional input functions for the backward problem

As for the forward problem there are numerous optional input parameters that control the behavior
of the idas solver for the backward problem. idas provides functions that can be used to change
these optional input parameters from their default values which are then described in detail in the
remainder of this section, beginning with those for the main idas solver and continuing with those
for the linear solver interfaces. For the most casual use of idas, the reader can skip to §6.3.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. All error return values are negative, so the test flag < 0 will catch all errors.
Finally, a call to a IDASet***B function can be made from the user’s calling program at any time
and, if successful, takes effect immediately.

6.2.10.1 Main solver optional input functions

The adjoint module in idas provides wrappers for most of the optional input functions defined in
§4.5.8.1. The only difference is that the user must specify the identifier which of the backward
problem within the list managed by idas.

The optional input functions defined for the backward problem are:

flag = IDASetUserDataB(ida_mem, which, user_dataB);

flag = IDASetMaxOrdB(ida_mem, which, maxordB);

flag = IDASetMaxNumStepsB(ida_mem, which, mxstepsB);

flag = IDASetInitStepB(ida_mem, which, hinB)

flag = IDASetMaxStepB(ida_mem, which, hmaxB);

flag = IDASetSuppressAlgB(ida_mem, which, suppressalgB);

flag = IDASetIdB(ida_mem, which, idB);

flag = IDASetConstraintsB(ida_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be IDA NO ADJ if IDAAdjInit has not been called, or IDA ILL INPUT if which was an invalid
identifier.
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6.2.10.2 Linear solver interface optional input functions

When using matrix-based linear solver modules for the backward problem, i.e., a non-NULL sunmatrix
object A was passed to IDASetLinearSolverB, the idals linear solver interface needs a function to
compute an approximation to the Jacobian matrix. This can be attached through a call to either
IDASetJacFnB or IDASetJacFnBS, with the second used when the backward problem depends on the
forward sensitivities.

IDASetJacFnB

Call flag = IDASetJacFnB(ida mem, which, jacB);

Description The function IDASetJacFnB specifies the Jacobian approximation function to be used
for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) represents the identifier of the backward problem.

jacB (IDALsJacFnB) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS IDASetJacFnB succeeded.

IDALS MEM NULL The ida mem was NULL.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS LMEM NULL The linear solver has not been initialized with a call to
IDASetLinearSolverB.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type IDALsJacFnB is described in §6.3.5.

The previous routine IDADlsSetJacFnB is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.
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IDASetJacFnBS

Call flag = IDASetJacFnBS(ida mem, which, jacBS);

Description The function IDASetJacFnBS specifies the Jacobian approximation function to be used
for the backward problem in the case where the backward problem depends on the
forward sensitivities.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) represents the identifier of the backward problem.

jacBS (IDALJacFnBS) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDALS SUCCESS IDASetJacFnBS succeeded.

IDALS MEM NULL The ida mem was NULL.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS LMEM NULL The linear solver has not been initialized with a call to
IDASetLinearSolverBS.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type IDALsJacFnBS is described in §6.3.5.

The previous routine IDADlsSetJacFnBS is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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The function IDASetLinearSolutionScalingB can be used to enable or disable solution scaling when
using a matrix-based linear solver.

IDASetLinearSolutionScalingB

Call flag = IDASetLinearSolutionScaling(ida mem, which, onoffB);

Description The function SetLinearSolutionScalingB enables or disables scaling the linear system
solution to account for a change in α in the linear system in the backward problem. For
more details see §11.4.1.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) represents the identifier of the backward problem.

onoffB (booleantype) flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return value The return value flag (of type int) is one of

IDALS SUCCESS The flag value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver interface has not been initialized.

IDALS ILL INPUT The attached linear solver is not matrix-based.

Notes By default scaling is enabled with matrix-based linear solvers when using BDF methods.
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When using a matrix-free linear solver module for the backward problem, the idals linear solver
interface requires a function to compute an approximation to the product between the Jacobian matrix
J(t, y) and a vector v. This may be performed internally using a difference-quotient approximation,
or it may be supplied by the user by calling one of the following two functions:

IDASetJacTimesB

Call flag = IDASetJacTimesB(ida mem, which, jsetupB, jtimesB);

Description The function IDASetJacTimesB specifies the Jacobian-vector setup and product func-
tions to be used.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

jtsetupB (IDALsJacTimesSetupFnB) user-defined function to set up the Jacobian-vector
product. Pass NULL if no setup is necessary.

jtimesB (IDALsJacTimesVecFnB) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem memory block pointer was NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDALsJacTimesVecFnB and IDALsJacTimesSetupFnB are described
in §6.3.6.

The previous routine IDASpilsSetJacTimesB is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacTimesB
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IDASetJacTimesBS

Call flag = IDASetJacTimesBS(ida mem, which, jsetupBS, jtimesBS);

Description The function IDASetJacTimesBS specifies the Jacobian-vector product setup and eval-
uation functions to be used, in the case where the backward problem depends on the
forward sensitivities.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

jtsetupBS (IDALsJacTimesSetupFnBS) user-defined function to set up the Jacobian-
vector product. Pass NULL if no setup is necessary.

jtimesBS (IDALsJacTimesVecFnBS) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem memory block pointer was NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDALsJacTimesVecFnBS and IDALsJacTimesSetupFnBS are described
in §6.3.6.

The previous routine IDASpilsSetJacTimesBS is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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When using the default difference-quotient approximation to the Jacobian-vector product for the
backward problem, the user may specify the factor to use in setting increments for the finite-difference
approximation, via a call to IDASetIncrementFactorB.

IDASetIncrementFactorB

Call flag = IDASetIncrementFactorB(ida mem, which, dqincfacB);

Description The function IDASetIncrementFactorB specifies the factor in the increments used in the
difference quotient approximations to matrix-vector products for the backward problem.

This routine can be used in both the cases where the backward problem does and does
not depend on the forward sensitvities.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

dqincfacB (realtype) difference quotient approximation factor.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The value of eplifacB is negative.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The default value is 1.0.

The previous routine IDASpilsSetIncrementFactorB is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.
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Additionally, When using the internal difference quotient for the backward problem, the user may also
optionally supply an alternative residual function for use in the Jacobian-vector product approximation
by calling IDASetJacTimesResFnB. The alternative residual side function should compute a suitable
(and differentiable) approximation to the residual function provided to IDAInitB or IDAInitBS. For
example, as done in [28] for the forward integration of an ODE in explicit form without sensitivity
analysis, the alternative function may use lagged values when evaluating a nonlinearity in the right-
hand side to avoid differencing a potentially non-differentiable factor.

IDASetJacTimesResFnB

Call flag = IDASetJacTimesResFnB(ida mem, which, jtimesResFn);

Description The function IDASetJacTimesResFnB specifies an alternative DAE residual function for
use in the internal Jacobian-vector product difference quotient approximation for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

jtimesResFn (IDAResFn) is the C function which computes the alternative DAE resid-
ual function to use in Jacobian-vector product difference quotient ap-
proximations. This function has the form res(t, yy, yp, resval,

user data). For full details see §4.6.1.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The parameter which represented an invalid identifier or the internal
difference quotient approximation is disabled.

Notes The default is to use the residual function provided to IDAInit in the internal difference
quotient. If the input resudual function is NULL, the default is used.

This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolverB.
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When using an iterative linear solver for the backward problem, the user may supply a preconditioning
operator to aid in solution of the system, or she/he may adjust the convergence tolerance factor for
the iterative linear solver. These may be accomplished through calling the following functions:

IDASetPreconditionerB

Call flag = IDASetPreconditionerB(ida mem, which, psetupB, psolveB);

Description The function IDASetPrecSolveFnB specifies the preconditioner setup and solve func-
tions for the backward integration.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

psetupB (IDALsPrecSetupFnB) user-defined preconditioner setup function.

psolveB (IDALsPrecSolveFnB) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem memory block pointer was NULL.
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IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDALsPrecSolveFnB and IDALsPrecSetupFnB are described in §6.3.8
and §6.3.9, respectively. The psetupB argument may be NULL if no setup operation is
involved in the preconditioner.

The previous routine IDASpilsSetPreconditionerB is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.
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IDASetPreconditionerBS

Call flag = IDASetPreconditionerBS(ida mem, which, psetupBS, psolveBS);

Description The function IDASetPrecSolveFnBS specifies the preconditioner setup and solve func-
tions for the backward integration, in the case where the backward problem depends on
the forward sensitivities.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

psetupBS (IDALsPrecSetupFnBS) user-defined preconditioner setup function.

psolveBS (IDALsPrecSolveFnBS) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem memory block pointer was NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDALsPrecSolveFnBS and IDALsPrecSetupFnBS are described in
§6.3.8 and §6.3.9, respectively. The psetupBS argument may be NULL if no setup oper-
ation is involved in the preconditioner.

The previous routine IDASpilsSetPreconditionerBS is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.
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IDASetEpsLinB

Call flag = IDASetEpsLinB(ida mem, which, eplifacB);

Description The function IDASetEpsLinB specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear iteration test constant. (See
§2.1). This routine can be used in both the cases wherethe backward problem does and
does not depend on the forward sensitvities.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

eplifacB (realtype) linear convergence safety factor (>= 0.0).

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.
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IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The value of eplifacB is negative.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes The default value is 0.05.

Passing a value eplifacB= 0.0 also indicates using the default value.

The previous routine IDASpilsSetEpsLinB is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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IDASetLSNormFactorB

Call flag = IDASetLSNormFactorB(ida mem, which, nrmfac);

Description The function IDASetLSNormFactorB specifies the factor to use when converting from
the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm) for
Newton linear system solves e.g., tol L2 = fac * tol WRMS. This routine can be used
in both the cases wherethe backward problem does and does not depend on the forward
sensitvities.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

nrmfac (realtype) the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac
= N VGetLength(y) (default).

< 0 then the conversion factor is computed using the vector dot product nrmfac
= N VDotProd(v,v) where all the entries of v are one.

Return value The return value flag (of type int) is one of

IDALS SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS LMEM NULL The idals linear solver has not been initialized.

IDALS NO ADJ The function IDAAdjInit has not been previously called.

IDALS ILL INPUT The value of eplifacB is negative.

IDALS ILL INPUT The parameter which represented an invalid identifier.

Notes This function must be called after the idals linear solver interface has been initialized
through a call to IDASetLinearSolverB.

Prior to the introduction of N VGetLength in sundials v5.0.0 (idas v4.0.0) the value
of nrmfac was computed using the vector dot product i.e., the nrmfac < 0 case.
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6.2.11 Optional output functions for the backward problem

6.2.11.1 Main solver optional output functions

The user of the adjoint module in idas has access to any of the optional output functions described
in §4.5.10, both for the main solver and for the linear solver modules. The first argument of these
IDAGet* and IDA*Get* functions is the pointer to the idas memory block for the backward problem.
In order to call any of these functions, the user must first call the following function to obtain this
pointer:
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IDAGetAdjIDABmem

Call ida memB = IDAGetAdjIDABmem(ida mem, which);

Description The function IDAGetAdjIDABmem returns a pointer to the idas memory block for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block created by IDACreate.

which (int) the identifier of the backward problem.

Return value The return value, ida memB (of type void *), is a pointer to the idas memory for the
backward problem.

Notes The user should not modify ida memB in any way.!

Optional output calls should pass ida memB as the first argument; thus, for example, to
get the number of integration steps: flag = IDAGetNumSteps(idas memB,&nsteps).
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To get values of the forward solution during a backward integration, use the following function.
The input value of t would typically be equal to that at which the backward solution has just been
obtained with IDAGetB. In any case, it must be within the last checkpoint interval used by IDASolveB.

IDAGetAdjY

Call flag = IDAGetAdjY(ida mem, t, y, yp);

Description The function IDAGetAdjY returns the interpolated value of the forward solution y and
its derivative during a backward integration.

Arguments ida mem (void *) pointer to the idas memory block created by IDACreate.

t (realtype) value of the independent variable at which y is desired (input).

y (N Vector) forward solution y(t).

yp (N Vector) forward solution derivative ẏ(t).

Return value The return value flag (of type int) is one of:

IDA SUCCESS IDAGetAdjY was successful.

IDA MEM NULL ida mem was NULL.

IDA GETY BADT The value of t was outside the current checkpoint interval.

Notes The user must allocate space for y and yp.!
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IDAGetAdjCheckPointsInfo

Call flag = IDAGetAdjCheckPointsInfo(ida mem, IDAadjCheckPointRec *ckpnt);

Description The function IDAGetAdjCheckPointsInfo loads an array of ncheck+1 records of type
IDAadjCheckPointRec. The user must allocate space for the array ckpnt.

Arguments ida mem (void *) pointer to the idas memory block created by IDACreate.

ckpnt (IDAadjCheckPointRec *) array of ncheck+1 checkpoint records, each of type
IDAadjCheckPointRec.

Return value The return value is IDA SUCCESS if successful, or IDA MEM NULL if ida mem is NULL, or
IDA NO ADJ if ASA was not initialized.

Notes The members of each record ckpnt[i] are:

• ckpnt[i].my addr (void *) address of current checkpoint in ida mem->ida adj mem

• ckpnt[i].next addr (void *) address of next checkpoint

• ckpnt[i].t0 (realtype) start of checkpoint interval
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• ckpnt[i].t1 (realtype) end of checkpoint interval

• ckpnt[i].nstep (long int) step counter at ckeckpoint t0

• ckpnt[i].order (int) method order at checkpoint t0

• ckpnt[i].step (realtype) step size at checkpoint t0

F2003 Name FIDAGetAdjCheckPointsInfo

6.2.11.2 Initial condition calculation optional output function

IDAGetConsistentICB

Call flag = IDAGetConsistentICB(ida mem, which, yB0 mod, ypB0 mod);

Description The function IDAGetConsistentICB returns the corrected initial conditions for back-
ward problem calculated by IDACalcICB.

Arguments ida mem (void *) pointer to the idas memory block.

which is the identifier of the backward problem.

yB0 mod (N Vector) consistent initial vector.

ypB0 mod (N Vector) consistent initial derivative vector.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO ADJ IDAAdjInit has not been previously called.

IDA ILL INPUT Parameter which did not refer a valid backward problem identifier.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yB0 mod and ypB0 mod (if not NULL). !

F2003 Name FIDAGetConsistentICB

6.2.12 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on
the forward sensitivities. Accordingly, one of the IDAQuadInitB or IDAQuadInitBS should be used to
allocate internal memory and to initialize backward quadratures. For any other operation (extraction,
optional input/output, reinitialization, deallocation), the same function is called regardless of whether
or not the quadratures are sensitivity-dependent.

6.2.12.1 Backward quadrature initialization functions

The function IDAQuadInitB initializes and allocates memory for the backward integration of quadra-
ture equations that do not depende on forward sensititvities. It has the following form:

IDAQuadInitB

Call flag = IDAQuadInitB(ida mem, which, rhsQB, yQB0);

Description The function IDAQuadInitB provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.



154 Using IDAS for Adjoint Sensitivity Analysis

rhsQB (IDAQuadRhsFnB) is the C function which computes fQB, the residual of the
backward quadrature equations. This function has the form rhsQB(t, y, yp,

yB, ypB, rhsvalBQ, user dataB) (see §6.3.3).

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInitB was successful.

IDA MEM NULL ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT The parameter which is an invalid identifier.

F2003 Name FIDAQuadInitB

The function IDAQuadInitBS initializes and allocates memory for the backward integration of
quadrature equations that depend on the forward sensitivities.

IDAQuadInitBS

Call flag = IDAQuadInitBS(ida mem, which, rhsQBS, yQBS0);

Description The function IDAQuadInitBS provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

rhsQBS (IDAQuadRhsFnBS) is the C function which computes fQBS, the residual of
the backward quadrature equations. This function has the form rhsQBS(t,

y, yp, yS, ypS, yB, ypB, rhsvalBQS, user dataB) (see §6.3.4).

yQBS0 (N Vector) is the value of the sensitivity-dependent quadrature variables at
tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInitBS was successful.

IDA MEM NULL ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT The parameter which is an invalid identifier.

F2003 Name FIDAQuadInitBS

The integration of quadrature equations during the backward phase can be re-initialized by calling
the following function. Before calling IDAQuadReInitB for a new backward problem, call any desired
solution extraction functions IDAGet** associated with the previous backward problem.

IDAQuadReInitB

Call flag = IDAQuadReInitB(ida mem, which, yQB0);

Description The function IDAQuadReInitB re-initializes the backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadReInitB was successful.

IDA MEM NULL ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.
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IDA MEM FAIL A memory allocation request has failed.

IDA NO QUAD Quadrature integration was not activated through a previous call to
IDAQuadInitB.

IDA ILL INPUT The parameter which is an invalid identifier.

Notes IDAQuadReInitB can be used after a call to either IDAQuadInitB or IDAQuadInitBS.

F2003 Name FIDAQuadReInitB

6.2.12.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of IDASolveB, idas provides
a wrapper for the function IDAGetQuad (see §4.7.3). The call to this function has the form

IDAGetQuadB

Call flag = IDAGetQuadB(ida mem, which, &tret, yQB);

Description The function IDAGetQuadB returns the quadrature solution vector after a successful
return from IDASolveB.

Arguments ida mem (void *) pointer to the idas memory.

tret (realtype) the time reached by the solver (output).

yQB (N Vector) the computed quadrature vector.

Return value The return value flag of IDAGetQuadB is one of:

IDA SUCCESS IDAGetQuadB was successful.

IDA MEM NULL ida mem is NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA NO QUAD Quadrature integration was not initialized.

IDA BAD DKY yQB was NULL.

IDA ILL INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yQB. !

To obtain the quadratures associated with a given backward problem at some other
time within the last integration step, first obtain a pointer to the proper idas memory
structure by calling IDAGetAdjIDABmem and then use it to call IDAGetQuadDky.

F2003 Name FIDAGetQuadB

6.2.12.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §4.7.4. The user must specify the identifier which of the
backward problem for which the optional values are specified.

flag = IDASetQuadErrConB(ida_mem, which, errconQ);

flag = IDAQuadSStolerancesB(ida_mem, which, reltolQ, abstolQ);

flag = IDAQuadSVtolerancesB(ida_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it
can also be IDA NO ADJ if the function IDAAdjInit has not been previously called or IDA ILL INPUT

if the parameter which was an invalid identifier.
Access to optional outputs related to backward quadrature integration can be obtained by calling

the corresponding IDAGetQuad* functions (see §4.7.5). A pointer ida memB to the idas memory block
for the backward problem, required as the first argument of these functions, can be obtained through
a call to the functions IDAGetAdjIDABmem (see §6.2.11).
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6.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required DAE residual function and any optional functions for the forward problem,
when using the adjoint sensitivity module in idas, the user must supply one function defining the
backward problem DAE and, optionally, functions to supply Jacobian-related information and one or
two functions that define the preconditioner (if applicable for the choice of sunlinsol object) for the
backward problem. Type definitions for all these user-supplied functions are given below.

6.3.1 DAE residual for the backward problem

The user must provide a resB function of type IDAResFnB defined as follows:

IDAResFnB

Definition typedef int (*IDAResFnB)(realtype t, N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB, void *user dataB);

Purpose This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the output vector containing the residual for the backward DAE problem.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAResFnB should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case idas will attempt to correct), or a negative value if an unre-
coverabl failure occurred (in which case the integration stops and IDASolveB returns
IDA RESFUNC FAIL).

Notes Allocation of memory for resvalB is handled within idas.

The y, yp, yB, ypB, and resvalB arguments are all of type N Vector, but yB, ypB, and
resvalB typically have different internal representations from y and yp. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each nvector implementation). For the sake of computational
efficiency, the vector functions in the two nvector implementations provided with idas
do not perform any consistency checks with respect to their N Vector arguments (see
§9.3 and §9.4).

The user dataB pointer is passed to the user’s resB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s resB function, idas needs to evaluate (through interpolation)!

the values of the states from the forward integration. If an error occurs in the inter-
polation, idas triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA RESFUNC FAIL.

6.3.2 DAE residual for the backward problem depending on the forward
sensitivities

The user must provide a resBS function of type IDAResFnBS defined as follows:
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IDAResFnBS

Definition typedef int (*IDAResFnBS)(realtype t, N Vector y, N Vector yp,

N Vector *yS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector resvalB, void *user dataB);

Purpose This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the output vector containing the residual for the backward DAE problem.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAResFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if an unre-
coverable error occurred (in which case the integration stops and IDASolveB returns
IDA RESFUNC FAIL).

Notes Allocation of memory for resvalB is handled within idas.

The y, yp, yB, ypB, and resvalB arguments are all of type N Vector, but yB, ypB,
and resvalB typically have different internal representations from y and yp. Likewise
for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data
consistently (including the use of the correct accessor macros from each nvector im-
plementation). For the sake of computational efficiency, the vector functions in the two
nvector implementations provided with idas do not perform any consistency checks
with respect to their N Vector arguments (see §9.3 and §9.4).

The user dataB pointer is passed to the user’s resBS function every time it is called
and can be the same as the user data pointer used for the forward problem.

Before calling the user’s resBS function, idas needs to evaluate (through interpolation) !

the values of the states from the forward integration. If an error occurs in the inter-
polation, idas triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA RESFUNC FAIL.

6.3.3 Quadrature right-hand side for the backward problem

The user must provide an fQB function of type IDAQuadRhsFnB defined by

IDAQuadRhsFnB

Definition typedef int (*IDAQuadRhsFnB)(realtype t, N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

N Vector rhsvalBQ, void *user dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.



158 Using IDAS for Adjoint Sensitivity Analysis

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

rhsvalBQ is the output vector containing the residual for the backward quadrature
equations.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA QRHSFUNC FAIL).

Notes Allocation of memory for rhsvalBQ is handled within idas.

The y, yp, yB, ypB, and rhsvalBQ arguments are all of type N Vector, but they typi-
cally all have different internal representations. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from each
nvector implementation). For the sake of computational efficiency, the vector func-
tions in the two nvector implementations provided with idas do not perform any
consistency checks with repsect to their N Vector arguments (see §9.3 and §9.4).

The user dataB pointer is passed to the user’s fQB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQB function, idas needs to evaluate (through interpolation) the!

values of the states from the forward integration. If an error occurs in the interpolation,
idas triggers an unrecoverable failure in the quadrature right-hand side function which
will halt the integration and IDASolveB will return IDA QRHSFUNC FAIL.

6.3.4 Sensitivity-dependent quadrature right-hand side for the backward
problem

The user must provide an fQBS function of type IDAQuadRhsFnBS defined by

IDAQuadRhsFnBS

Definition typedef int (*IDAQuadRhsFnBS)(realtype t, N Vector y, N Vector yp,

N Vector *yS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector rhsvalBQS, void *user dataB);

Purpose This function computes the quadrature equation residual for the backward problem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

rhsvalBQS is the output vector containing the residual for the backward quadrature
equations.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.



6.3 User-supplied functions for adjoint sensitivity analysis 159

Return value An IDAQuadRhsFnBS should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA QRHSFUNC FAIL).

Notes Allocation of memory for rhsvalBQS is handled within idas.

The y, yp, yB, ypB, and rhsvalBQS arguments are all of type N Vector, but they typically
do not all have the same internal representations. Likewise for each yS[i] and ypS[i].
It is the user’s responsibility to access the vector data consistently (including the use
of the correct accessor macros from each nvector implementation). For the sake
of computational efficiency, the vector functions in the two nvector implementations
provided with idas do not perform any consistency checks with repsect to their N Vector

arguments (see §9.3 and §9.4).

The user dataB pointer is passed to the user’s fQBS function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQBS function, idas needs to evaluate (through interpolation) !

the values of the states from the forward integration. If an error occurs in the interpo-
lation, idas triggers an unrecoverable failure in the quadrature right-hand side function
which will halt the integration and IDASolveB will return IDA QRHSFUNC FAIL.

6.3.5 Jacobian construction for the backward problem (matrix-based lin-
ear solvers)

If a matrix-based linear solver module is is used for the backward problem (i.e., IDASetLinearSolverB
is called with non-NULL sunmatrix argument in the step described in §6.1), the user may provide a
function of type IDALsJacFnB or IDALsJacFnBS (see §6.2.10), defined as follows:

IDALsJacFnB

Definition typedef int (*IDALsJacFnB)(realtype tt, realtype cjB,

N Vector yy, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB,

SUNMatrix JacB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it).

Arguments tt is the current value of the independent variable.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

yy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

JacB is the output approximate Jacobian matrix.

user dataB is a pointer to user data — the parameter passed to IDASetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by the IDALsJacFnB function as temporary storage or work space.



160 Using IDAS for Adjoint Sensitivity Analysis

Return value An IDALsJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct, while idals sets last flag to
IDALS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, IDASolveB returns IDA LSETUP FAIL and idals sets last flag to
IDALS JACFUNC UNRECVR).

Notes A user-supplied Jacobian function must load the matrix JacB with an approximation
to the Jacobian matrix at the point (tt,yy,yB), where yy is the solution of the original
IVP at time tt, and yB is the solution of the backward problem at the same time.
Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 10 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT), the
Jacobian matrix J(t, y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into JacB.

Before calling the user’s IDALsJacFnB, idas needs to evaluate (through interpolation)!

the values of the states from the forward integration. If an error occurs in the in-
terpolation, idas triggers an unrecoverable failure in the Jacobian function which will
halt the integration (IDASolveB returns IDA LSETUP FAIL and idals sets last flag to
IDALS JACFUNC UNRECVR).

The previous function type IDADlsJacFnB is identical to IDALsJacFnB, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new function type name soon.

IDALsJacFnBS

Definition typedef int (*IDALsJacFnBS)(realtype tt, realtype cjB,

N Vector yy, N Vector yp,

N Vector *yS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector resvalB,

SUNMatrix JacB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it), in the case where the backward problem depends on the forward sensitivities.

Arguments tt is the current value of the independent variable.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

yy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
solution sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

JacB is the output approximate Jacobian matrix.

user dataB is a pointer to user data — the parameter passed to IDASetUserDataB.

tmp1B

tmp2B
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tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by IDALsJacFnBS as temporary storage or work space.

Return value An IDALsJacFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct, while idals sets last flag to
IDALS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, IDASolveB returns IDA LSETUP FAIL and idals sets last flag to
IDALS JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the matrix JacB with an approxi-
mation to the Jacobian matrix at the point (tt,yy,yS,yB), where yy is the solution of
the original IVP at time tt, yS is the array of forward sensitivities at time tt, and
yB is the solution of the backward problem at the same time. Information regarding
the structure of the specific sunmatrix structure (e.g. number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific
sunmatrix interface functions (see Chapter 10 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT, the
Jacobian matrix J(t, y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into JacB.

Before calling the user’s IDALsJacFnBS, idas needs to evaluate (through interpolation) !

the values of the states from the forward integration. If an error occurs in the in-
terpolation, idas triggers an unrecoverable failure in the Jacobian function which will
halt the integration (IDASolveB returns IDA LSETUP FAIL and idals sets last flag to
IDALS JACFUNC UNRECVR).

The previous function type IDADlsJacFnBS is identical to IDALsJacFnBS, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new function type name soon.

6.3.6 Jacobian-vector product for the backward problem (matrix-free lin-
ear solvers)

If a matrix-free linear solver is selected for the backward problem (i.e., IDASetLinearSolverB is
called with NULL-valued sunmatrix argument in the steps described in §6.1), the user may provide a
function of type
IDALsJacTimesVecFnB or IDALsJacTimesVecFnBS in the following form, to compute matrix-vector
products Jv. If such a function is not supplied, the default is a difference quotient approximation to
these products.

IDALsJacTimesVecFnB

Definition typedef int (*IDALsJacTimesVecFnB)(realtype t,

N Vector yy, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB,

N Vector vB, N Vector JvB,

realtype cjB, void *user dataB,

N Vector tmp1B, N Vector tmp2B);

Purpose This function computes the action of the backward problem Jacobian JB on a given
vector vB.

Arguments t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.
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resvalB is the current value of the residual for the backward problem.

vB is the vector by which the Jacobian must be multiplied.

JvB is the computed output vector, JB*vB.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.

tmp1B

tmp2B are pointers to memory allocated for variables of type N Vector which can
be used by IDALsJacTimesVecFnB as temporary storage or work space.

Return value The return value of a function of type IDALsJtimesVecFnB should be 0 if successful or
nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t, y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type IDALsJacTimesVecFn (see §4.6.6). If the backward problem
is the adjoint of ẏ = f(t, y), then this function is to compute −(∂f/∂y)T vB .

The previous function type IDASpilsJacTimesVecFnB is identical to
IDALsJacTimesVecFnB, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

IDALsJacTimesVecFnBS

Definition typedef int (*IDALsJacTimesVecFnBS)(realtype t,

N Vector yy, N Vector yp,

N Vector *yyS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector resvalB,

N Vector vB, N Vector JvB,

realtype cjB, void *user dataB,

N Vector tmp1B, N Vector tmp2B);

Purpose This function computes the action of the backward problem Jacobian JB on a given
vector vB, in the case where the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yyS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

vB is the vector by which the Jacobian must be multiplied.

JvB is the computed output vector, JB*vB.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.
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tmp1B

tmp2B are pointers to memory allocated for variables of type N Vector which can
be used by IDALsJacTimesVecFnBS as temporary storage or work space.

Return value The return value of a function of type IDALsJtimesVecFnBS should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t, y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type IDALsJacTimesVecFn (see §4.6.6).

The previous function type IDASpilsJacTimesVecFnBS is identical to
IDALsJacTimesVecFnBS, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

6.3.7 Jacobian-vector product setup for the backward problem (matrix-
free linear solvers)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or eval-
uated, then this needs to be done in a user-supplied function of type IDALsJacTimesSetupFnB or
IDALsJacTimesSetupFnBS, defined as follows:

IDALsJacTimesSetupFnB

Definition typedef int (*IDALsJacTimesSetupFnB)(realtype tt,

N Vector yy, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB,

realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yp, yB, ypB) arguments. Thus,
the setup function can use any auxiliary data that is computed and saved during the
evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFnB function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
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the error weights, etc. To obtain these, the user will need to add a pointer to ida mem

to user dataB and then use the IDAGet* functions described in §4.5.10.2. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type IDASpilsJacTimesSetupFnB is identical to
IDALsJacTimesSetupFnB, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

IDALsJacTimesSetupFnBS

Definition typedef int (*IDALsJacTimesSetupFnBS)(realtype tt,

N Vector yy, N Vector yp,

N Vector *yyS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector resvalB,

realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem, in the case that the backward problem
depends on the forward sensitivities.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

yyS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yp, yyS, ypS, yB, ypB) argu-
ments. Thus, the setup function can use any auxiliary data that is computed and saved
during the evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFnB function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida mem

to user dataB and then use the IDAGet* functions described in §4.5.10.2. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type IDASpilsJacTimesSetupFnBS is identical to
IDALsJacTimesSetupFnBS, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.
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6.3.8 Preconditioner solve for the backward problem (iterative linear solvers)

If preconditioning is used during integration of the backward problem, then the user must provide a
function to solve the linear system Pz = r, where P is a left preconditioner matrix. This function
must have one of the following two forms:

IDALsPrecSolveFnB

Definition typedef int (*IDALsPrecSolveFnB)(realtype t,

N Vector yy, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB,

N Vector rvecB, N Vector zvecB,

realtype cjB, realtype deltaB,

void *user dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem.

Arguments t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to the function IDASetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSolveFnB is identical to IDALsPrecSolveFnB,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

IDALsPrecSolveFnBS

Definition typedef int (*IDALsPrecSolveFnBS)(realtype t,

N Vector yy, N Vector yp,

N Vector *yyS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector resvalB,

N Vector rvecB, N Vector zvecB,

realtype cjB, realtype deltaB,

void *user dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem, for
the case in which the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.

yy is the current value of the forward solution vector.
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yp is the current value of the forward solution derivative vector.

yyS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to the function IDASetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSolveFnBS is identical to IDALsPrecSolveFnBS,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

6.3.9 Preconditioner setup for the backward problem (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of one of the following two types:

IDALsPrecSetupFnB

Definition typedef int (*IDALsPrecSetupFnB)(realtype t,

N Vector yy, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB,

realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of an IDALsPrecSetupFnB are as follows:

t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to the function IDASetUserDataB.
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Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSetupFnB is identical to IDALsPrecSetupFnB,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

IDALsPrecSetupFnBS

Definition typedef int (*IDALsPrecSetupFnBS)(realtype t,

N Vector yy, N Vector yp,

N Vector *yyS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector resvalB,

realtype cjB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem, in the case where the backward problem depends
on the forward sensitivities.

Arguments The arguments of an IDALsPrecSetupFnBS are as follows:

t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward solution vector.

yyS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to the function IDASetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSetupFnBS is identical to IDALsPrecSetupFnBS,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

6.4 Using the band-block-diagonal preconditioner for back-
ward problems

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of
linear systems can be greatly enhanced through preconditioning. The band-block-diagonal precondi-
tioner module idabbdpre, provides interface functions through which it can be used on the backward
integration phase.
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The adjoint module in idas offers an interface to the band-block-diagonal preconditioner module
idabbdpre described in section §4.8. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the MPI-parallel vector module nvector parallel.

In order to use the idabbdpre module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.

6.4.1 Usage of IDABBDPRE for the backward problem

The idabbdpre module is initialized by calling the following function, after an iterative linear solver
for the backward problem has been attached to idas by calling IDASetLinearSolverB (see §6.2.6).

IDABBDPrecInitB

Call flag = IDABBDPrecInitB(ida mem, which, NlocalB, mudqB, mldqB,

mukeepB, mlkeepB, dqrelyB, GresB, GcommB);

Description The function IDABBDPrecInitB initializes and allocates memory for the idabbdpre
preconditioner for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

NlocalB (sunindextype) local vector dimension for the backward problem.

mudqB (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldqB (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeepB (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeepB (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dqrelyB=

√
unit roundoff, which can

be specified by passing dqrely= 0.0.

GresB (IDABBDLocalFnB) the C function which computesGB(t, y, ẏ, yB , ẏB), the func-
tion approximating the residual of the backward problem.

GcommB (IDABBDCommFnB) the optional C function which performs all interprocess com-
munication required for the computation of GB .

Return value If successful, IDABBDPrecInitB creates, allocates, and stores (internally in the idas
solver block) a pointer to the newly created idabbdpre memory block. The return
value flag (of type int) is one of:

IDALS SUCCESS The call to IDABBDPrecInitB was successful.

IDALS MEM FAIL A memory allocation request has failed.

IDALS MEM NULL The ida mem argument was NULL.

IDALS LMEM NULL No linear solver has been attached.

IDALS ILL INPUT An invalid parameter has been passed.

F2003 Name FIDABBDPrecInitB

To reinitialize the idabbdpre preconditioner module for the backward problem, possibly with a change
in mudqB, mldqB, or dqrelyB, call the following function:
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IDABBDPrecReInitB

Call flag = IDABBDPrecReInitB(ida mem, which, mudqB, mldqB, dqrelyB);

Description The function IDABBDPrecReInitB reinitializes the idabbdpre preconditioner for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) the identifier of the backward problem.

mudqB (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldqB (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations.

Return value The return value flag (of type int) is one of:

IDALS SUCCESS The call to IDABBDPrecReInitB was successful.

IDALS MEM FAIL A memory allocation request has failed.

IDALS MEM NULL The ida mem argument was NULL.

IDALS PMEM NULL The IDABBDPrecInitB has not been previously called.

IDALS LMEM NULL No linear solver has been attached.

IDALS ILL INPUT An invalid parameter has been passed.

F2003 Name FIDABBDPrecReInitB

For more details on idabbdpre see §4.8.

6.4.2 User-supplied functions for IDABBDPRE

To use the idabbdpre module, the user must supply one or two functions which the module calls
to construct the preconditioner: a required function GresB (of type IDABBDLocalFnB) which approxi-
mates the residual of the backward problem and which is computed locally, and an optional function
GcommB (of type IDABBDCommFnB) which performs all interprocess communication necessary to evaluate
this approximate residual (see §4.8). The prototypes for these two functions are described below.

IDABBDLocalFnB

Definition typedef int (*IDABBDLocalFnB)(sunindextype NlocalB, realtype t,

N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

N Vector gB, void *user dataB);

Purpose This GresB function loads the vector gB, an approximation to the residual of the back-
ward problem, as a function of t, y, yp, and yB and ypB.

Arguments NlocalB is the local vector length for the backward problem.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

gB is the output vector, GB(t, y, ẏ, yB , ẏB).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.
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Return value An IDABBDLocalFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA LSETUP FAIL).

Notes This routine must assume that all interprocess communication of data needed to calcu-
late gB has already been done, and this data is accessible within user dataB.

Before calling the user’s IDABBDLocalFnB, idas needs to evaluate (through interpola-!

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, idas triggers an unrecoverable failure in the preconditioner setup function
which will halt the integration (IDASolveB returns IDA LSETUP FAIL).

IDABBDCommFnB

Definition typedef int (*IDABBDCommFnB)(sunindextype NlocalB, realtype t,

N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

void *user dataB);

Purpose This GcommB function performs all interprocess communications necessary for the exe-
cution of the GresB function above, using the input vectors y, yp, yB and ypB.

Arguments NlocalB is the local vector length.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.

Return value An IDABBDCommFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA LSETUP FAIL).

Notes The GcommB function is expected to save communicated data in space defined within
the structure user dataB.

Each call to the GcommB function is preceded by a call to the function that evaluates the
residual of the backward problem with the same t, y, yp, yB and ypB arguments. If there
is no additional communication needed, then pass GcommB = NULL to IDABBDPrecInitB.



Chapter 7

Using IDAS for Fortran
Applications

A Fortran 2003 module (fidas mod) is provided to support the use of idas, for the solution of DAE
systems and performing forward sensitivity analysis or adjoint sensitivity analysis in a mixed For-
tran/C setting. While idas is written in C, it is assumed here that the user’s calling program and
user-supplied problem-defining routines are written in Fortran.

7.1 IDAS Fortran 2003 Interface Module

The fidas mod Fortran module defines interfaces to most idas C functions using the intrinsic iso c binding

module which provides a standardized mechanism for interoperating with C. All interfaced functions
are named after the corresponding C function, but with a leading ‘F’. For example, the idas function
IDACreate is interfaced as FIDACreate. Thus, the steps to use idas and the function calls in Fortran
2003 are identical (ignoring language differences) to those in C. The C functions with Fortran 2003
interfaces indicate this in their description in Chapters 4, 5, and 6 . The Fortran 2003 idas inter-
face module can be accessed by the use statement, i.e. use fidas mod, and linking to the library
libsundials fidas mod.lib in addition to libsundials idas.lib.

The Fortran 2003 interface modules were generated with SWIG Fortran, a fork of SWIG [42].
Users who are interested in the SWIG code used in the generation process should contact the sundials
development team.

7.1.1 SUNDIALS Fortran 2003 Interface Modules

All of the generic sundials modules provide Fortran 2003 interface modules. Many of the generic
module implementations provide Fortran 2003 interfaces (a complete list of modules with Fortran
2003 interfaces is given in Table 7.1). A module can be accessed with the use statement, e.g. use

fnvector openmp mod, and linking to the Fortran 2003 library in addition to the C library, e.g.
libsundials fnvecpenmp mod.lib and libsundials nvecopenmp.lib.

The Fortran 2003 interfaces leverage the iso c binding module and the bind(C) attribute to
closely follow the sundials C API (ignoring language differences). The generic sundials structures,
e.g. N Vector, are interfaced as Fortran derived types, and function signatures are matched but with
an F prepending the name, e.g. FN VConst instead of N VConst. Constants are named exactly as they
are in the C API. Accordingly, using sundials via the Fortran 2003 interfaces looks just like using
it in C. Some caveats stemming from the language differences are discussed in the section 7.1.3. A
discussion on the topic of equivalent data types in C and Fortran 2003 is presented in section 7.1.2.

Further information on the Fortran 2003 interfaces specific to modules is given in the nvector,
sunmatrix, sunlinsol, and sunnonlinsol alongside the C documentation (chapters 9, 10, 11, and
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12 respectively). For details on where the Fortran 2003 module (.mod) files and libraries are installed
see Appendix A.

Table 7.1: Summary of Fortran 2003 interfaces for shared sundials modules.

Module Fortran 2003 Module Name
NVECTOR fsundials nvector mod

nvector serial fnvector serial mod

nvector parallel fnvector parallel mod

nvector openmp fnvector openmp mod

nvector pthreads fnvector pthreads mod

nvector parhyp Not interfaced
nvector petsc Not interfaced
nvector cuda Not interfaced
nvector raja Not interfaced
nvector manyvector fnvector manyvector mod

nvector mpimanyvector fnvector mpimanyvector mod

nvector mpiplusx fnvector mpiplusx mod

SUNMatrix fsundials matrix mod

sunmatrix band fsunmatrix band mod

sunmatrix dense fsunmatrix dense mod

sunmatrix sparse fsunmatrix sparse mod

SUNLinearSolver fsundials linearsolver mod

sunlinsol band fsunlinsol band mod

sunlinsol dense fsunlinsol dense mod

sunlinsol lapackband Not interfaced
sunlinsol lapackdense Not interfaced
sunlinsol klu fsunlinsol klu mod

sunlinsol superlumt Not interfaced
sunlinsol superludist Not interfaced
sunlinsol spgmr fsunlinsol spgmr mod

sunlinsol spfgmr fsunlinsol spfgmr mod

sunlinsol spbcgs fsunlinsol spbcgs mod

sunlinsol sptfqmr fsunlinsol sptfqmr mod

sunlinsol pcg fsunlinsol pcg mod

SUNNonlinearSolver fsundials nonlinearsolver mod

sunnonlinsol newton fsunnonlinsol newton mod

sunnonlinsol fixedpoint fsunnonlinsol fixedpoint mod

7.1.2 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive
types map to the iso c binding type equivalent. sundials generic types map to a Fortran derived
type. However, the handling of pointer types is not always clear as they can depend on the parameter
direction. Table 7.2 presents a summary of the type equivalencies with the parameter direction in
mind.

Currently, the Fortran 2003 interfaces are only compatible with sundials builds where the realtype!

is double precision and the sunindextype size is 64-bits.
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Table 7.2: C/Fortran 2003 Equivalent Types

C type Parameter Direction Fortran 2003 type
double in, inout, out, return real(c double)

int in, inout, out, return integer(c int)

long in, inout, out, return integer(c long)

booleantype in, inout, out, return integer(c int)

realtype in, inout, out, return real(c double)

sunindextype in, inout, out, return integer(c long)

double* in, inout, out real(c double), dimension(*)

double* return real(c double), pointer, dimension(:)

int* in, inout, out integer(c int), dimension(*)

int* return integer(c int), pointer, dimension(:)

long* in, inout, out integer(c long), dimension(*)

long* return integer(c long), pointer, dimension(:)

realtype* in, inout, out real(c double), dimension(*)

realtype* return real(c double), pointer, dimension(:)

sunindextype* in, inout, out integer(c long), dimension(*)

sunindextype* return integer(c long), pointer, dimension(:)

realtype[] in, inout, out real(c double), dimension(*)

sunindextype[] in, inout, out integer(c long), dimension(*)

N Vector in, inout, out type(N Vector)

N Vector return type(N Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer

SUNLinearSolver in, inout, out type(SUNLinearSolver)

SUNLinearSolver return type(SUNLinearSolver), pointer

SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)

SUNNonlinearSolver return type(SUNNonlinearSolver), pointer

FILE* in, inout, out, return type(c ptr)

void* in, inout, out, return type(c ptr)

T** in, inout, out, return type(c ptr)

T*** in, inout, out, return type(c ptr)

T**** in, inout, out, return type(c ptr)

7.1.3 Notable Fortran/C usage differences

While the Fortran 2003 interface to sundials closely follows the C API, some differences are inevitable
due to the differences between Fortran and C. In this section, we note the most critical differences.
Additionally, section 7.1.2 discusses equivalencies of data types in the two languages.

7.1.3.1 Creating generic sundials objects

In the C API a generic sundials object, such as an N Vector, is actually a pointer to an underlying
C struct. However, in the Fortran 2003 interface, the derived type is bound to the C struct, not the
pointer to the struct. E.g., type(N Vector) is bound to the C struct generic N Vector not the
N Vector type. The consequence of this is that creating and declaring sundials objects in Fortran is
nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;

x = N_VNew_Serial(N);

Fortran code:
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type(N_Vector), pointer :: x

x => FN_VNew_Serial(N)

Note that in the Fortran declaration, the vector is a type(N Vector), pointer, and that the
pointer assignment operator is then used.

7.1.3.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when
they are return values versus arguments to a function. Additionally, pointers which are meant to be
out parameters, not arrays, in the C API must still be declared as a rank-1 array in Fortran. The
reason for this is partially due to the Fortran 2003 standard for C bindings, and partially due to the
tool used to generate the interfaces. Regardless, the code snippets below illustrate the differences.

C code:

N_Vector x

realtype* xdata;

long int leniw, lenrw;

x = N_VNew_Serial(N);

/* capturing a returned array/pointer */

xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */

N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */

N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)

real(c_double) :: xdata(N)

integer(c_long) :: leniw(1), lenrw(1)

x => FN_VNew_Serial(x)

! capturing a returned array/pointer

xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function

call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters

call FN_VSpace(x, leniw, lenrw)

7.1.3.3 Passing procedure pointers and user data

Since functions/subroutines passed to sundials will be called from within C code, the Fortran proce-
dure must have the attribute bind(C). Additionally, when providing them as arguments to a Fortran
2003 interface routine, it is required to convert a procedure’s Fortran address to C with the Fortran
intrinsic c funloc.

Typically when passing user data to a sundials function, a user may simply cast some custom
data structure as a void*. When using the Fortran 2003 interfaces, the same thing can be achieved.



7.1 IDAS Fortran 2003 Interface Module 175

Note, the custom data structure does not have to be bind(C) since it is never accessed on the C side.

C code:

MyUserData* udata;

void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata

type(c_ptr) :: cvode_mem

ierr = FCVodeSetUserData(cvode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem
parameters, within modules, and thus do not need the SUNDIALS-provided user data pointers to
pass such data back to user-supplied functions. These users should supply the c null ptr input for
user data arguments to the relevant sundials functions.

7.1.3.4 Passing NULL to optional parameters

In the sundials C API some functions have optional parameters that a caller can pass NULL to. If the
optional parameter is of a type that is equivalent to a Fortran type(c ptr) (see section 7.1.2), then a
Fortran user can pass the intrinsic c null ptr. However, if the optional parameter is of a type that is
not equivalent to type(c ptr), then a caller must provide a Fortran pointer that is dissociated. This
is demonstrated in the code example below.

C code:

SUNLinearSolver LS;

N_Vector x, b;

! SUNLinSolSolve expects a SUNMatrix or NULL

! as the second parameter.

ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS

type(SUNMatrix), pointer :: A

type(N_Vector), pointer :: x, b

A => null()

! SUNLinSolSolve expects a type(SUNMatrix), pointer

! as the second parameter. Therefore, we cannot

! pass a c_null_ptr, rather we pass a disassociated A.

ierr = FSUNLinSolSolve(LS, A, x, b)

7.1.3.5 Working with N Vector arrays

Arrays of N Vector objects are interfaced to Fortran 2003 as opaque type(c ptr). As such, it is
not possible to directly index an array of N Vector objects returned by the N Vector “VectorArray”
operations, or packages with sensitivity capablities. Instead, sundials provides a utility function
FN VGetVecAtIndexVectorArray that can be called for accessing a vector in a vector array. The



176 Using IDAS for Fortran Applications

example below demonstrates this:

C code:

N_Vector x;

N_Vector* vecs;

vecs = N_VCloneVectorArray(count, x);

for (int i=0; i < count; ++i)

N_VConst(vecs[i]);

Fortran code:

type(N_Vector), pointer :: x, xi

type(c_ptr) :: vecs

vecs = FN_VCloneVectorArray(count, x)

do index, count

xi => FN_VGetVecAtIndexVectorArray(vecs, index)

call FN_VConst(xi)

enddo

sundials also provides the functions FN VSetVecAtIndexVectorArray and FN VNewVectorArray

for working with N Vector arrays. These functions are particularly useful for users of the Fortran
interface to the nvector manyvector or nvector mpimanyvector when creating the subvector
array. Both of these functions along with FN VGetVecAtIndexVectorArray are further described in
Chapter 9.1.6.

7.1.3.6 Providing file pointers

Expert sundials users may notice that there are a few advanced functions in the sundials C API
that take a FILE * argument. Since there is no portable way to convert between a Fortran file descrip-
tor and a C file pointer, sundials provides two utility functions for creating a FILE * and destroying
it. These functions are defined in the module fsundials futils mod.

FSUNDIALSFileOpen

Call fp = FSUNDIALSFileOpen(filename, mode)

Description The function allocates a FILE * by calling the C function fopen.

Arguments filename (character(kind=C CHAR, len=*)) - the path to the file to open

mode (character(kind=C CHAR, len=*)) - the mode string given to fopen It
should begin with one of the following characters:

“r” - open text file for reading

“r+” - open text file for reading and writing

“w” - truncate text file to zero length or create it for writing

“w+” - open text file for reading or writing, create it if it does not exist

“a” - open for appending, see documentation of “fopen“ for your sys-
tem/compiler

“a+” - open for reading and appending, see documentation for “fopen“
for your system/compiler

Return value This returns a type(C PTR) which is a FILE* in C. If it is NULL, then there was an error
opening the file.
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FSUNDIALSFileClose

Call call FSUNDIALSFileClose(fp)

Description The function deallocates a FILE* by calling the C function fclose.

Arguments fp (type(C PTR)) - the file pointer (type FILE* in C)

Return value None

7.1.4 Important notes on portability

The sundials Fortran 2003 interface should be compatible with any compiler supporting the Fortran
2003 ISO standard. However, it has only been tested and confirmed to be working with GNU Fortran
4.9+ and Intel Fortran 18.0.1+.

Upon compilation of sundials, Fortran module (.mod) files are generated for each Fortran 2003
interface. These files are highly compiler specific, and thus it is almost always necessary to compile a
consuming application with the same compiler used to generate the modules.





Chapter 8

IDAS Features for GPU
Accelerated Computing

This chapter is concerned with using GPU-acceleration and idas for the integration of DAEs, forward
sensitivity analysis, and adjoint sensitivity analysis.

8.1 SUNDIALS GPU Programming Model

In this section, we introduce the sundials GPU programming model and highlight sundials GPU
features. The model leverages the fact that all of the sundials packages interact with simulation
data either through the shared vector, matrix, and solver APIs (see §9, §10, §11, and §12) or through
user-supplied callback functions. Thus, under the model, the overall structure of the user’s calling
program, and the way users interact with the sundials packages is similar to using sundials in
CPU-only environments.

Within the sundials GPU programming model, all control logic executes on the CPU, and all
simulation data resides wherever the vector or matrix object dictates as long as sundials is in control
of the program. That is, sundials will not migrate data (explicitly) from one memory space to
another. Except in the most advanced use cases, it is safe to assume that data is kept resident in
the GPU-device memory space. The consequence of this is that, when control is passed from the
user’s calling program to sundials, simulation data in vector or matrix objects must be up-to-date
in the device memory space. Similarly, when control is passed from sundials to the user’s calling
program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program
to manage data coherency between the CPU and GPU-device memory spaces unless unified virtual
memory (UVM), also known as managed memory, is being utilized. Typically, the GPU-enabled
sundials modules provide functions to copy data from the host to the device and vice-versa as well
as support for unmanaged memory or UVM. In practical terms, the way sundials handles distinct
host and device memory spaces means that users need to ensure that the user-supplied functions, e.g.
the right-hand side function, only operate on simulation data in the device memory space otherwise
extra memory transfers will be required and performance will be poor. The exception to this rule is if
some form of hybrid data partitioning (achievable with the nvector manyvector §9.15) is utilized.

sundials provides many native shared features and modules that are GPU-enabled. Currently,
these are primarily limited to the NVIDIA CUDA platform [5], although support for more GPU
computing platforms such as AMD ROCm/HIP [1] and Intel oneAPI [2], is an area of active de-
velopment. Table 8.1 summarizes the shared sundials modules that are GPU-enabled, what GPU
programming environments they support, and what class of memory they support (unmanaged or
UVM). Users may also supply their own GPU-enabled N Vector, SUNMatrix, SUNLinearSolver, or
SUNNonlinearSolver implementation, and the capabilties will be leveraged since sundials operates
on data through these APIs.
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In addition, sundials provides the SUNMemoryHelper API §13.1 to support applications which
implement their own memory management or memory pooling.

Table 8.1: List of sundials GPU Enabled Modules. Note that support for ROCm/HIP and oneAPI
are currently untested, and implicit UVM (i.e. malloc returning UVM) is not accounted for. A The
† symbol indicates that the module inherits support from the nvector module used.
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nvector cuda (§9.9) X X X
nvector raja (§9.11) X X X

nvector openmpdev (§9.13) X X X X
sunmatrix cusparse (§10.7) X X X

sunlinsol cusolversp batchqr (§11.12) X X X
sunlinsol spgmr (§11.15) † † † † †

sunlinsol spfgmr (§11.16) † † † † †
sunlinsol sptfqmr (§11.18) † † † † †
sunlinsol spbcgs (§11.17) † † † † †

sunlinsol pcg (§11.19) † † † † †
sunnonlinsol newton (§12.3) † † † † †

sunnonlinsol fixedpoint (§??) † † † † †

8.2 Steps for Using GPU Accelerated SUNDIALS

For any sundials package, the generalized steps a user needs to take to use GPU accelerated sundials
are:

1. Utilize a GPU-enabled nvector implementation. Initial data can be loaded on the host, but
must be in the device memory space prior to handing control to sundials.

2. Utilize a GPU-enabled sunlinsol linear solver (if necessary).

3. Utilize a GPU-enabled sunmatrix implementation (if using a matrix-based linear solver).

4. Utilize a GPU-enabled sunnonlinsol nonlinear solver (if necessary).

5. Write user-supplied functions so that they use data only in the device memory space (again,
unless an atypical data partitioning is used). A few examples of these functions are the right-
hand side evaluation function, the Jacobian evalution function, or the preconditioner evaluation
function. In the context of CUDA and the right-hand side function, one way a user might
ensure data is accessed on the device is, for example, calling a CUDA kernel, which does all of
the computation, from a CPU function which simply extracts the underlying device data array
from the nvector object that is passed from sundials to the user-supplied function.

Users should refer to Table 8.1 for a list of GPU-enabled native sundials modules.



Chapter 9

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module, or use one of the
implementations provided with sundials. The generic nvector is described below and the imple-
mentations provided with sundials are described in the following sections.

9.1 The NVECTOR API

The generic nvector API can be broken down into groups of functions: the core vector operations,
the fused vector operations, the vector array operations, the local reduction operations, the exchange
operations, and finally some utility functions. All but the last group are defined by a particular
nvector implementation. The utility functions are defined by the generic nvector itself.

9.1.1 NVECTOR core functions

N VGetVectorID

Call id = N VGetVectorID(w);

Description Returns the vector type identifier for the vector w. It is used to determine the vector
implementation type (e.g. serial, parallel,. . . ) from the abstract N Vector interface.

Arguments w (N Vector) a nvector object

Return value This function returns an N Vector ID. Possible values are given in Table 9.1.

F2003 Name FN VGetVectorID

N VClone

Call v = N VClone(w);

Description Creates a new N Vector of the same type as an existing vector w and sets the ops field.
It does not copy the vector, but rather allocates storage for the new vector.

Arguments w (N Vector) a nvector object

Return value This function returns an N Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN VClone
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N VCloneEmpty

Call v = N VCloneEmpty(w);

Description Creates a new N Vector of the same type as an existing vector w and sets the ops field.
It does not allocate storage for data.

Arguments w (N Vector) a nvector object

Return value This function returns an N Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN VCloneEmpty

N VDestroy

Call N VDestroy(v);

Description Destroys the N Vector v and frees memory allocated for its internal data.

Arguments v (N Vector) a nvector object to destroy

Return value None

F2003 Name FN VDestroy

N VSpace

Call N VSpace(v, &lrw, &liw);

Description Returns storage requirements for one N Vector. lrw contains the number of realtype
words and liw contains the number of integer words, This function is advisory only, for
use in determining a user’s total space requirements; it could be a dummy function in
a user-supplied nvector module if that information is not of interest.

Arguments v (N Vector) a nvector object

lrw (sunindextype*) out parameter containing the number of realtype words

liw (sunindextype*) out parameter containing the number of integer words

Return value None

F2003 Name FN VSpace

F2003 Call integer(c long) :: lrw(1), liw(1)

call FN VSpace Serial(v, lrw, liw)

N VGetArrayPointer

Call vdata = N VGetArrayPointer(v);

Description Returns a pointer to a realtype array from the N Vector v. Note that this assumes
that the internal data in N Vector is a contiguous array of realtype and is accessible
from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial)
linear solvers, the sparse linear solvers (serial and threaded), and in the interfaces to
the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided
with sundials.

Arguments v (N Vector) a nvector object

Return value realtype*

F2003 Name FN VGetArrayPointer
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N VGetDeviceArrayPointer

Call vdata = N VGetDeviceArrayPointer(v);

Description Returns a device pointer to a realtype array from the N Vector v. Note that this
assumes that the internal data in N Vector is a contiguous array of realtype and is
accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Arguments v (N Vector) a nvector object

Return value realtype*

Notes Currently, only the GPU-enabled sundials vectors provide this operation. All other
SUNDIALS vectors will return NULL.

F2003 Name FN VGetDeviceArrayPointer

N VSetArrayPointer

Call N VSetArrayPointer(vdata, v);

Description Overwrites the pointer to the data in an N Vector with a given realtype*. Note that
this assumes that the internal data in N Vector is a contiguous array of realtype. This
routine is only used in the interfaces to the dense (serial) linear solver, hence need not
exist in a user-supplied nvector module for a parallel environment.

Arguments v (N Vector) a nvector object

Return value None

F2003 Name FN VSetArrayPointer

N VGetCommunicator

Call N VGetCommunicator(v);

Description Returns a pointer to the MPI Comm object associated with the vector (if applicable). For
MPI-unaware vector implementations, this should return NULL.

Arguments v (N Vector) a nvector object

Return value A void * pointer to the MPI Comm object if the vector is MPI-aware, otherwise NULL.

F2003 Name FN VGetCommunicator

N VGetLength

Call N VGetLength(v);

Description Returns the global length (number of ‘active’ entries) in the nvector v. This value
should be cumulative across all processes if the vector is used in a parallel environment.
If v contains additional storage, e.g., for parallel communication, those entries should
not be included.

Arguments v (N Vector) a nvector object

Return value sunindextype

F2003 Name FN VGetLength
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N VLinearSum

Call N VLinearSum(a, x, b, y, z);

Description Performs the operation z = ax + by, where a and b are realtype scalars and x and y
are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

Arguments a (realtype) constant that scales x

x (N Vector) a nvector object

b (realtype) constant that scales y

y (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value The output vector z can be the same as either of the input vectors (x or y).

F2003 Name FN VLinearSum

N VConst

Call N VConst(c, z);

Description Sets all components of the N Vector z to realtype c: zi = c, i = 0, . . . , n− 1.

Arguments c (realtype) constant to set all components of z to

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VConst

N VProd

Call N VProd(x, y, z);

Description Sets the N Vector z to be the component-wise product of the N Vector inputs x and y:
zi = xiyi, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

y (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VProd

N VDiv

Call N VDiv(x, y, z);

Description Sets the N Vector z to be the component-wise ratio of the N Vector inputs x and y:
zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested for 0 values. It should only be
called with a y that is guaranteed to have all nonzero components.

Arguments x (N Vector) a nvector object

y (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VDiv
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N VScale

Call N VScale(c, x, z);

Description Scales the N Vector x by the realtype scalar c and returns the result in z: zi = cxi, i =
0, . . . , n− 1.

Arguments c (realtype) constant that scales the vector x

x (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VScale

N VAbs

Call N VAbs(x, z);

Description Sets the components of the N Vector z to be the absolute values of the components of
the N Vector x: zi = |xi|, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VAbs

N VInv

Call N VInv(x, z);

Description Sets the components of the N Vector z to be the inverses of the components of the
N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may not check for division by 0.
It should be called only with an x which is guaranteed to have all nonzero components.

Arguments x (N Vector) a nvector object to

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VInv

N VAddConst

Call N VAddConst(x, b, z);

Description Adds the realtype scalar b to all components of x and returns the result in the N Vector

z: zi = xi + b, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

b (realtype) constant added to all components of x

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VAddConst

N VDotProd

Call d = N VDotProd(x, y);

Description Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

Arguments x (N Vector) a nvector object with y

y (N Vector) a nvector object with x
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Return value realtype

F2003 Name FN VDotProd

N VMaxNorm

Call m = N VMaxNorm(x);

Description Returns the maximum norm of the N Vector x: m = maxi |xi|.

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMaxNorm

N VWrmsNorm

Call m = N VWrmsNorm(x, w)

Description Returns the weighted root-mean-square norm of the N Vector x with realtype weight

vector w: m =

√(∑n−1
i=0 (xiwi)2

)
/n.

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

Return value realtype

F2003 Name FN VWrmsNorm

N VWrmsNormMask

Call m = N VWrmsNormMask(x, w, id);

Description Returns the weighted root mean square norm of the N Vector x with realtype weight
vector w built using only the elements of x corresponding to positive elements of the

N Vector id: m =

√(∑n−1
i=0 (xiwiH(idi))2

)
/n, where H(α) =

{
1 α > 0

0 α ≤ 0

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

id (N Vector) mask vector

Return value realtype

F2003 Name FN VWrmsNormMask

N VMin

Call m = N VMin(x);

Description Returns the smallest element of the N Vector x: m = mini xi.

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMin
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N VWL2Norm

Call m = N VWL2Norm(x, w);

Description Returns the weighted Euclidean `2 norm of the N Vector x with realtype weight vector

w: m =
√∑n−1

i=0 (xiwi)2.

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

Return value realtype

F2003 Name FN VWL2Norm

N VL1Norm

Call m = N VL1Norm(x);

Description Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
Arguments x (N Vector) a nvector object to obtain the norm of

Return value realtype

F2003 Name FN VL1Norm

N VCompare

Call N VCompare(c, x, z);

Description Compares the components of the N Vector x to the realtype scalar c and returns an
N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

Arguments c (realtype) constant that each component of x is compared to

x (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VCompare

N VInvTest

Call t = N VInvTest(x, z);

Description Sets the components of the N Vector z to be the inverses of the components of the
N Vector x, with prior testing for zero values: zi = 1.0/xi, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

z (N Vector) an output nvector object

Return value Returns a booleantype with value SUNTRUE if all components of x are nonzero (success-
ful inversion) and returns SUNFALSE otherwise.

F2003 Name FN VInvTest

N VConstrMask

Call t = N VConstrMask(c, x, m);

Description Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1, xi ≤ 0 if
ci = −1, xi < 0 if ci = −2. There is no constraint on xi if ci = 0. This routine returns
a boolean assigned to SUNFALSE if any element failed the constraint test and assigned
to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0 where
the constraint test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.
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Arguments c (realtype) scalar constraint value

x (N Vector) a nvector object

m (N Vector) output mask vector

Return value Returns a booleantype with value SUNFALSE if any element failed the constraint test,
and SUNTRUE if all passed.

F2003 Name FN VConstrMask

N VMinQuotient

Call minq = N VMinQuotient(num, denom);

Description This routine returns the minimum of the quotients obtained by term-wise dividing numi
by denomi. A zero element in denom will be skipped. If no such quotients are found, then
the large value BIG REAL (defined in the header file sundials types.h) is returned.

Arguments num (N Vector) a nvector object used as the numerator

denom (N Vector) a nvector object used as the denominator

Return value realtype

F2003 Name FN VMinQuotient

9.1.2 NVECTOR fused functions

Fused and vector array operations are intended to increase data reuse, reduce parallel communication
on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular nvector implementation defines a fused or vector array operation as NULL, the generic
nvector module will automatically call standard vector operations as necessary to complete the
desired operation. In all sundials-provided nvector implementations, all fused and vector array
operations are disabled by default. However, these implementations provide additional user-callable
functions to enable/disable any or all of the fused and vector array operations. See the following
sections for the implementation specific functions to enable/disable operations.

N VLinearCombination

Call ier = N VLinearCombination(nv, c, X, z);

Description This routine computes the linear combination of nv vectors with n elements:

zi =

nv−1∑
j=0

cjxj,i, i = 0, . . . , n− 1,

where c is an array of nv scalars, X is an array of nv vectors, and z is the output vector.

Arguments nv (int) the number of vectors in the linear combination

c (realtype*) an array of nv scalars used to scale the corresponding vector in X

X (N Vector*) an array of nv nvector objects to be scaled and combined

z (N Vector) a nvector object containing the result

Return value Returns an int with value 0 for success and a non-zero value otherwise.

Notes If the output vector z is one of the vectors in X, then it must be the first vector in the
vector array.

F2003 Name FN VLinearCombination

F2003 Call real(c double) :: c(nv)

type(c ptr), target :: X(nv)

type(N Vector), pointer :: z

ierr = FN VLinearCombination(nv, c, X, z)
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N VScaleAddMulti

Call ier = N VScaleAddMulti(nv, c, x, Y, Z);

Description This routine scales and adds one vector to nv vectors with n elements:

zj,i = cjxi + yj,i, j = 0, . . . , nv − 1 i = 0, . . . , n− 1,

where c is an array of nv scalars, x is the vector to be scaled and added to each vector
in the vector array of nv vectors Y , and Z is a vector array of nv output vectors.

Arguments nv (int) the number of scalars and vectors in c, Y, and Z

c (realtype*) an array of nv scalars

x (N Vector) a nvector object to be scaled and added to each vector in Y

Y (N Vector*) an array of nv nvector objects where each vector j will have the
vector x scaled by c j added to it

Z (N Vector) an output array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VScaleAddMulti

F2003 Call real(c double) :: c(nv)

type(c ptr), target :: Y(nv), Z(nv)

type(N Vector), pointer :: x

ierr = FN VScaleAddMulti(nv, c, x, Y, Z)

N VDotProdMulti

Call ier = N VDotProdMulti(nv, x, Y, d);

Description This routine computes the dot product of a vector with nv other vectors:

dj =

n−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d is an array of nv scalars containing the dot products of the vector x with each
of the nv vectors in the vector array Y .

Arguments nv (int) the number of vectors in Y

x (N Vector) a nvector object to be used in a dot product with each of the vectors
in Y

Y (N Vector*) an array of nv nvector objects to use in a dot product with x

d (realtype*) an output array of nv dot products

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VDotProdMulti

F2003 Call real(c double) :: d(nv)

type(c ptr), target :: Y(nv)

type(N Vector), pointer :: x

ierr = FN VDotProdMulti(nv, x, Y, d)

9.1.3 NVECTOR vector array functions
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N VLinearSumVectorArray

Call ier = N VLinearSumVectorArray(nv, a, X, b, Y, Z);

Description This routine computes the linear sum of two vector arrays containing nv vectors of n
elements:

zj,i = axj,i + byj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where a and b are scalars and X, Y , and Z are arrays of nv vectors.

Arguments nv (int) the number of vectors in the vector arrays

a (realtype) constant to scale each vector in X by

X (N Vector*) an array of nv nvector objects

Y (N Vector*) an array of nv nvector objects

Z (N Vector*) an output array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VLinearSumVectorArray

N VScaleVectorArray

Call ier = N VScaleVectorArray(nv, c, X, Z);

Description This routine scales each vector of n elements in a vector array of nv vectors by a
potentially different constant:

zj,i = cjxj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of nv scalars and X and Z are arrays of nv vectors.

Arguments nv (int) the number of vectors in the vector arrays

c (realtype) constant to scale each vector in X by

X (N Vector*) an array of nv nvector objects

Z (N Vector*) an output array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VScaleVectorArray

N VConstVectorArray

Call ier = N VConstVectorArray(nv, c, X);

Description This routine sets each element in a vector of n elements in a vector array of nv vectors
to the same value:

zj,i = c, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is a scalar and X is an array of nv vectors.

Arguments nv (int) the number of vectors in X

c (realtype) constant to set every element in every vector of X to

X (N Vector*) an array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VConstVectorArray
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N VWrmsNormVectorArray

Call ier = N VWrmsNormVectorArray(nv, X, W, m);

Description This routine computes the weighted root mean square norm of nv vectors with n ele-
ments:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,i)
2

)1/2

, j = 0, . . . , nv − 1,

where m contains the nv norms of the vectors in the vector array X with corresponding
weight vectors W .

Arguments nv (int) the number of vectors in the vector arrays

X (N Vector*) an array of nv nvector objects

W (N Vector*) an array of nv nvector objects

m (realtype*) an output array of nv norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VWrmsNormVectorArray

N VWrmsNormMaskVectorArray

Call ier = N VWrmsNormMaskVectorArray(nv, X, W, id, m);

Description This routine computes the masked weighted root mean square norm of nv vectors with
n elements:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,iH(idi))
2

)1/2

, j = 0, . . . , nv − 1,

H(idi) = 1 for idi > 0 and is zero otherwise, m contains the nv norms of the vectors in
the vector array X with corresponding weight vectors W and mask vector id.

Arguments nv (int) the number of vectors in the vector arrays

X (N Vector*) an array of nv nvector objects

W (N Vector*) an array of nv nvector objects

id (N Vector) the mask vector

m (realtype*) an output array of nv norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VWrmsNormMaskVectorArray

N VScaleAddMultiVectorArray

Call ier = N VScaleAddMultiVectorArray(nv, ns, c, X, YY, ZZ);

Description This routine scales and adds a vector in a vector array of nv vectors to the corresponding
vector in ns vector arrays:

zk,j,i = ckxj,i + yk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1, k = 0, . . . , ns− 1

where c is an array of ns scalars, X is a vector array of nv vectors to be scaled and
added to the corresponding vector in each of the ns vector arrays in the array of vector
arrays Y Y and stored in the output array of vector arrays ZZ.

Arguments nv (int) the number of vectors in the vector arrays

ns (int) the number of scalars in c and vector arrays in YY and ZZ

c (realtype*) an array of ns scalars
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X (N Vector*) an array of nv nvector objects

YY (N Vector**) an array of ns nvector arrays

ZZ (N Vector**) an output array of ns nvector arrays

Return value Returns an int with value 0 for success and a non-zero value otherwise.

N VLinearCombinationVectorArray

Call ier = N VLinearCombinationVectorArray(nv, ns, c, XX, Z);

Description This routine computes the linear combination of ns vector arrays containing nv vectors
with n elements:

zj,i =

ns−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of ns scalars (type realtype*), XX (type N Vector**) is an array
of ns vector arrays each containing nv vectors to be summed into the output vector
array of nv vectors Z (type N Vector*). If the output vector array Z is one of the
vector arrays in XX, then it must be the first vector array in XX.

Arguments nv (int) the number of vectors in the vector arrays

ns (int) the number of scalars in c and vector arrays in YY and ZZ

c (realtype*) an array of ns scalars

XX (N Vector**) an array of ns nvector arrays

Z (N Vector*) an output array nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

9.1.4 NVECTOR local reduction functions

Local reduction operations are intended to reduce parallel communication on distributed memory
systems, particularly when nvector objects are combined together within a
nvector mpimanyvector object (see Section 9.16). If a particular nvector implementation de-
fines a local reduction operation as NULL, the nvector mpimanyvector module will automati-
cally call standard vector reduction operations as necessary to complete the desired operation. All
sundials-provided nvector implementations include these local reduction operations, which may
be used as templates for user-defined nvector implementations.

N VDotProdLocal

Call d = N VDotProdLocal(x, y);

Description This routine computes the MPI task-local portion of the ordinary dot product of x and
y:

d =

nlocal−1∑
i=0

xiyi,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

y (N Vector) a nvector object

Return value realtype

F2003 Name FN VDotProdLocal
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N VMaxNormLocal

Call m = N VMaxNormLocal(x);

Description This routine computes the MPI task-local portion of the maximum norm of the N Vector

x:
m = max

0≤i<nlocal

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMaxNormLocal

N VMinLocal

Call m = N VMinLocal(x);

Description This routine computes the smallest element of the MPI task-local portion of the N Vector

x:
m = min

0≤i<nlocal

xi,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMinLocal

N VL1NormLocal

Call n = N VL1NormLocal(x);

Description This routine computes the MPI task-local portion of the `1 norm of the N Vector x:

n =

nlocal−1∑
i=0

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VL1NormLocal

N VWSqrSumLocal

Call s = N VWSqrSumLocal(x,w);

Description This routine computes the MPI task-local portion of the weighted squared sum of the
N Vector x with weight vector w:

s =

nlocal−1∑
i=0

(xiwi)
2,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).
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Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

Return value realtype

F2003 Name FN VWSqrSumLocal

N VWSqrSumMaskLocal

Call s = N VWSqrSumMaskLocal(x,w,id);

Description This routine computes the MPI task-local portion of the weighted squared sum of the
N Vector x with weight vector w built using only the elements of x corresponding to
positive elements of the N Vector id:

m =

nlocal−1∑
i=0

(xiwiH(idi))
2, where H(α) =

{
1 α > 0

0 α ≤ 0

and nlocal corresponds to the number of components in the vector on this MPI task (or
nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

id (N Vector) a nvector object used as a mask

Return value realtype

F2003 Name FN VWSqrSumMaskLocal

N VInvTestLocal

Call t = N VInvTestLocal(x, z);

Description Sets the MPI task-local components of the N Vector z to be the inverses of the compo-
nents of the N Vector x, with prior testing for zero values:

zi = 1.0/xi, i = 0, . . . , nlocal − 1,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

z (N Vector) an output nvector object

Return value Returns a booleantype with the value SUNTRUE if all task-local components of x are
nonzero (successful inversion) and with the value SUNFALSE otherwise.

F2003 Name FN VInvTestLocal

N VConstrMaskLocal

Call t = N VConstrMaskLocal(c,x,m);

Description Performs the following constraint tests:

xi > 0 if ci = 2,

xi ≥ 0 if ci = 1,

xi ≤ 0 if ci = −1,

xi < 0 if ci = −2, and

no test if ci = 0,

for all MPI task-local components of the vectors. It sets a mask vector m, with elements
equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine
is used only for constraint checking.



9.1 The NVECTOR API 195

Arguments c (realtype) scalar constraint value

x (N Vector) a nvector object

m (N Vector) output mask vector

Return value Returns a booleantype with the value SUNFALSE if any task-local element failed the
constraint test and the value SUNTRUE if all passed.

F2003 Name FN VConstrMaskLocal

N VMinQuotientLocal

Call minq = N VMinQuotientLocal(num,denom);

Description This routine returns the minimum of the quotients obtained by term-wise dividing numi
by denomi, for all MPI task-local components of the vectors. A zero element in denom

will be skipped. If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

Arguments num (N Vector) a nvector object used as the numerator

denom (N Vector) a nvector object used as the denominator

Return value realtype

F2003 Name FN VMinQuotientLocal

9.1.5 NVECTOR exchange operations

The following vector exchange operations are also optional and are intended only for use when in-
terfacing with the XBraid library for parallel-in-time integration. In that setting these operations
are required but are otherwise unused by SUNDIALS packages and may be set to NULL. For each
operation, we give the function signature, a description of the expected behavior, and an example of
the function usage.

N VBufSize

Call flag = N VBufSize(N Vector x, sunindextype *size);

Description This routine returns the buffer size need to exchange in the data in the vector x between
computational nodes.

Arguments x (N Vector) a nvector object

size (sunindextype*) the size of the message buffer

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VBufSize

N VBufPack

Call flag = N VBufPack(N Vector x, void *buf);

Description This routine fills the exchange buffer buf with the vector data in x.

Arguments x (N Vector) a nvector object

buf (sunindextype*) the exchange buffer to pack

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VBufPack
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N VBufUnpack

Call flag = N VBufUnpack(N Vector x, void *buf);

Description This routine unpacks the data in the exchange buffer buf into the vector x.

Arguments x (N Vector) a nvector object

buf (sunindextype*) the exchange buffer to unpack

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VBufUnpack

9.1.6 NVECTOR utility functions

To aid in the creation of custom nvector modules the generic nvector module provides three utility
functions N VNewEmpty, N VCopyOps and N VFreeEmpty. When used in custom nvector constructors
and clone routines these functions will ease the introduction of any new optional vector operations to
the nvector API by ensuring only required operations need to be set and all operations are copied
when cloning a vector.

To aid the use of arrays of nvector objects, the generic nvector module also provides the utility
functions N VCloneVectorArray, N VCloneVectorArrayEmpty, and N VDestroyVectorArray.

N VNewEmpty

Call v = N VNewEmpty();

Description The function N VNewEmpty allocates a new generic nvector object and initializes its
content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns an N Vector object. If an error occurs when allocating the object,
then this routine will return NULL.

F2003 Name FN VNewEmpty

N VCopyOps

Call retval = N VCopyOps(w, v);

Description The function N VCopyOps copies the function pointers in the ops structure of w into the
ops structure of v.

Arguments w (N Vector) the vector to copy operations from

v (N Vector) the vector to copy operations to

Return value This returns 0 if successful and a non-zero value if either of the inputs are NULL or the
ops structure of either input is NULL.

F2003 Name FN VCopyOps

N VFreeEmpty

Call N VFreeEmpty(v);

Description This routine frees the generic N Vector object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been
freed. It will additionally test whether the ops pointer is NULL, and, if it is not, it will
free it as well.

Arguments v (N Vector)

Return value None

F2003 Name FN VFreeEmpty
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N VCloneEmptyVectorArray

Call vecarray = N VCloneEmptyVectorArray(count, w);

Description Creates an array of count variables of type N Vector, each of the same type as the exist-
ing N Vector w. It achieves this by calling the implementation-specific N VCloneEmpty

operation.

Arguments count (int) the size of the vector array

w (N Vector) the vector to clone

Return value Returns an array of count N Vector objects if successful, or NULL if an error occurred
while cloning.

N VCloneVectorArray

Call vecarray = N VCloneVectorArray(count, w);

Description Creates an array of count variables of type N Vector, each of the same type as the
existing N Vector w. It achieves this by calling the implementation-specific N VClone

operation.

Arguments count (int) the size of the vector array

w (N Vector) the vector to clone

Return value Returns an array of count N Vector objects if successful, or NULL if an error occurred
while cloning.

N VDestroyVectorArray

Call N VDestroyVectorArray(count, w);

Description Destroys (frees) an array of variables of type N Vector. It depends on the implementation-
specific N VDestroy operation.

Arguments vs (N Vector*) the array of vectors to destroy

count (int) the size of the vector array

Return value None

N VNewVectorArray

Call vecarray = N VNewVectorArray(count);

Description Returns an empty N Vector array large enough to hold count N Vector objects. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments count (int) the size of the vector array

Return value Returns a N Vector* if successful, Returns NULL if an error occurred.

Notes Users of the Fortran 2003 interface to the N VManyVector or N VMPIManyVector will need
this to create an array to hold the subvectors. Note that this function does restrict the
the max number of subvectors usable with the N VManyVector and N VMPIManyVector

to the max size of an int despite the ManyVector implementations accepting a subvector
count larger than this value.

F2003 Name FN VNewVectorArray
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Table 9.1: Vector Identifications associated with vector kernels supplied with sundials.

Vector ID Vector type ID Value
SUNDIALS NVEC SERIAL Serial 0
SUNDIALS NVEC PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS NVEC OPENMP OpenMP shared memory parallel 2
SUNDIALS NVEC PTHREADS PThreads shared memory parallel 3
SUNDIALS NVEC PARHYP hypre ParHyp parallel vector 4
SUNDIALS NVEC PETSC petsc parallel vector 5
SUNDIALS NVEC CUDA cuda vector 6
SUNDIALS NVEC HIP hip vector 7
SUNDIALS NVEC SYCL sycl vector 8
SUNDIALS NVEC RAJA raja vector 9
SUNDIALS NVEC OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS NVEC TRILINOS Trilinos Tpetra vector 11
SUNDIALS NVEC MANYVECTOR “ManyVector” vector 12
SUNDIALS NVEC MPIMANYVECTOR MPI-enabled “ManyVector” vector 13
SUNDIALS NVEC MPIPLUSX MPI+X vector 14
SUNDIALS NVEC CUSTOM User-provided custom vector 15

N VGetVecAtIndexVectorArray

Call v = N VGetVecAtIndexVectorArray(vecs, index);

Description Returns the N Vector object stored in the vector array at the provided index. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N Vector*) the array of vectors to index

index (int) the index of the vector to return

Return value Returns the N Vector object stored in the vector array at the provided index. Returns
NULL if an error occurred.

F2003 Name FN VGetVecAtIndexVectorArray

N VSetVecAtIndexVectorArray

Call N VSetVecAtIndexVectorArray(vecs, index, v);

Description Sets the N Vector object stored in the vector array at the provided index. This function
is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N Vector*) the array of vectors to index

index (int) the index of the vector to return

v (N Vector) the vector to store at the index

Return value None

F2003 Name FN VSetVecAtIndexVectorArray

9.1.7 NVECTOR identifiers

Each nvector implementation included in sundials has a unique identifier specified in enumeration
and shown in Table 9.1.

9.1.8 The generic NVECTOR module implementation

The generic N Vector type is a pointer to a structure that has an implementation-dependent content
field containing the description and actual data of the vector, and an ops field pointing to a structure
with generic vector operations. The type N Vector is defined as
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typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector_ID (*nvgetvectorid)(N_Vector);

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, sunindextype *, sunindextype *);

realtype* (*nvgetarraypointer)(N_Vector);

realtype* (*nvgetdevicearraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void* (*nvgetcommunicator)(N_Vector);

sunindextype (*nvgetlength)(N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

int (*nvlinearcombination)(int, realtype*, N_Vector*, N_Vector);

int (*nvscaleaddmulti)(int, realtype*, N_Vector, N_Vector*, N_Vector*);

int (*nvdotprodmulti)(int, N_Vector, N_Vector*, realtype*);

int (*nvlinearsumvectorarray)(int, realtype, N_Vector*, realtype,

N_Vector*, N_Vector*);

int (*nvscalevectorarray)(int, realtype*, N_Vector*, N_Vector*);

int (*nvconstvectorarray)(int, realtype, N_Vector*);

int (*nvwrmsnomrvectorarray)(int, N_Vector*, N_Vector*, realtype*);

int (*nvwrmsnomrmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector,

realtype*);

int (*nvscaleaddmultivectorarray)(int, int, realtype*, N_Vector*,

N_Vector**, N_Vector**);

int (*nvlinearcombinationvectorarray)(int, int, realtype*, N_Vector**,

N_Vector*);

realtype (*nvdotprodlocal)(N_Vector, N_Vector);
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realtype (*nvmaxnormlocal)(N_Vector);

realtype (*nvminlocal)(N_Vector);

realtype (*nvl1normlocal)(N_Vector);

booleantype (*nvinvtestlocal)(N_Vector, N_Vector);

booleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotientlocal)(N_Vector, N_Vector);

realtype (*nvwsqrsumlocal)(N_Vector, N_Vector);

realtype (*nvwsqrsummasklocal(N_Vector, N_Vector, N_Vector);

int (*nvbufsize)(N_Vector, sunindextype *);

int (*nvbufpack)(N_Vector, void*);

int (*nvbufunpack)(N_Vector, void*);

};

The generic nvector module defines and implements the vector operations acting on an N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector
implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector
module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Section 9.1.1 defines a complete list of all standard vector operations defined by the generic nvector
module. Sections 9.1.2, 9.1.3 and 9.1.4 list optional fused, vector array and local reduction operations,
respectively.

The Fortran 2003 interface provides a bind(C) derived-type for the generic N Vector and the
generic N Vector Ops structures. Their definition is given below.

type, bind(C), public :: N_Vector

type(C_PTR), public :: content

type(C_PTR), public :: ops

end type N_Vector

type, bind(C), public :: N_Vector_Ops

type(C_FUNPTR), public :: nvgetvectorid

type(C_FUNPTR), public :: nvclone

type(C_FUNPTR), public :: nvcloneempty

type(C_FUNPTR), public :: nvdestroy

type(C_FUNPTR), public :: nvspace

type(C_FUNPTR), public :: nvgetarraypointer

type(C_FUNPTR), public :: nvsetarraypointer

type(C_FUNPTR), public :: nvgetcommunicator

type(C_FUNPTR), public :: nvgetlength

type(C_FUNPTR), public :: nvlinearsum

type(C_FUNPTR), public :: nvconst

type(C_FUNPTR), public :: nvprod

type(C_FUNPTR), public :: nvdiv

type(C_FUNPTR), public :: nvscale

type(C_FUNPTR), public :: nvabs

type(C_FUNPTR), public :: nvinv

type(C_FUNPTR), public :: nvaddconst

type(C_FUNPTR), public :: nvdotprod

type(C_FUNPTR), public :: nvmaxnorm

type(C_FUNPTR), public :: nvwrmsnorm
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type(C_FUNPTR), public :: nvwrmsnormmask

type(C_FUNPTR), public :: nvmin

type(C_FUNPTR), public :: nvwl2norm

type(C_FUNPTR), public :: nvl1norm

type(C_FUNPTR), public :: nvcompare

type(C_FUNPTR), public :: nvinvtest

type(C_FUNPTR), public :: nvconstrmask

type(C_FUNPTR), public :: nvminquotient

type(C_FUNPTR), public :: nvlinearcombination

type(C_FUNPTR), public :: nvscaleaddmulti

type(C_FUNPTR), public :: nvdotprodmulti

type(C_FUNPTR), public :: nvlinearsumvectorarray

type(C_FUNPTR), public :: nvscalevectorarray

type(C_FUNPTR), public :: nvconstvectorarray

type(C_FUNPTR), public :: nvwrmsnormvectorarray

type(C_FUNPTR), public :: nvwrmsnormmaskvectorarray

type(C_FUNPTR), public :: nvscaleaddmultivectorarray

type(C_FUNPTR), public :: nvlinearcombinationvectorarray

type(C_FUNPTR), public :: nvdotprodlocal

type(C_FUNPTR), public :: nvmaxnormlocal

type(C_FUNPTR), public :: nvminlocal

type(C_FUNPTR), public :: nvl1normlocal

type(C_FUNPTR), public :: nvinvtestlocal

type(C_FUNPTR), public :: nvconstrmasklocal

type(C_FUNPTR), public :: nvminquotientlocal

type(C_FUNPTR), public :: nvwsqrsumlocal

type(C_FUNPTR), public :: nvwsqrsummasklocal

type(C_FUNPTR), public :: nvbufsize

type(C_FUNPTR), public :: nvbufpack

type(C_FUNPTR), public :: nvbufunpack

end type N_Vector_Ops

9.1.9 Implementing a custom NVECTOR

A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.

It is recommended that a user-supplied nvector implementation returns the SUNDIALS NVEC CUSTOM

identifier from the N VGetVectorID function.
To aid in the creation of custom nvector modules the generic nvector module provides two

utility functions N VNewEmpty and N VCopyOps. When used in custom nvector constructors and
clone routines these functions will ease the introduction of any new optional vector operations to the
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nvector API by ensuring only required operations need to be set and all operations are copied when
cloning a vector.

9.1.9.1 Support for complex-valued vectors

While sundials itself is written under an assumption of real-valued data, it does provide limited
support for complex-valued problems. However, since none of the built-in nvector modules supports
complex-valued data, users must provide a custom nvector implementation for this task. Many of
the nvector routines described in Sections 9.1.1-9.1.4 above naturally extend to complex-valued
vectors; however, some do not. To this end, we provide the following guidance:

• N VMin and N VMinLocal should return the minimum of all real components of the vector, i.e.,
m = mini real(xi).

• N VConst (and similarly N VConstVectorArray) should set the real components of the vector to
the input constant, and set all imaginary components to zero, i.e., zi = c+ 0j, i = 0, . . . , n− 1.

• N VAddConst should only update the real components of the vector with the input constant,
leaving all imaginary components unchanged.

• N VWrmsNorm, N VWrmsNormMask, N VWSqrSumLocal and N VWSqrSumMaskLocal should assume
that all entries of the weight vector w and the mask vector id are real-valued.

• N VDotProd should mathematically return a complex number for complex-valued vectors; as
this is not possible with sundials’ current realtype, this routine should be set to NULL in the
custom nvector implementation.

• N VCompare, N VConstrMask, N VMinQuotient, N VConstrMaskLocal and N VMinQuotientLocal

are ill-defined due to the lack of a clear ordering in the complex plane. These routines should
be set to NULL in the custom nvector implementation.

While many sundials solver modules may be utilized on complex-valued data, others cannot.
Specifically, although both sunnonlinsol newton and sunnonlinsol fixedpoint may be used
with any of the IVP solvers (cvode, cvodes, ida, idas and arkode) for complex-valued problems,
the Anderson-acceleration feature sunnonlinsol fixedpoint cannot be used due to its reliance on
N VDotProd. By this same logic, the Anderson acceleration feature within kinsol also will not work
with complex-valued vectors.

Similarly, although each package’s linear solver interface (e.g., cvls) may be used on complex-
valued problems, none of the built-in sunmatrix or sunlinsol modules work. Hence a complex-
valued user should provide a custom sunlinsol (and optionally a custom sunmatrix) implementation
for solving linear systems, and then attach this module as normal to the package’s linear solver
interface.

Finally, constraint-handling features of each package cannot be used for complex-valued data,
due to the issue of ordering in the complex plane discussed above with N VCompare, N VConstrMask,
N VMinQuotient, N VConstrMaskLocal and N VMinQuotientLocal.

We provide a simple example of a complex-valued example problem, including a custom complex-
valued Fortran 2003 nvector module, in the files
examples/arkode/F2003 custom/ark analytic complex f2003.f90,
examples/arkode/F2003 custom/fnvector complex mod.f90, and
examples/arkode/F2003 custom/test fnvector complex mod.f90.

9.2 NVECTOR functions used by IDAS

In Table 9.2 below, we list the vector functions used in the nvector module used by the idas package.
The table also shows, for each function, which of the code modules uses the function. The idas column
shows function usage within the main integrator module, while the remaining columns show function
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usage within the idas linear solvers interface, the idabbdpre preconditioner module, and the idaa
module.

At this point, we should emphasize that the idas user does not need to know anything about the
usage of vector functions by the idas code modules in order to use idas. The information is presented
as an implementation detail for the interested reader.

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing dense
or band Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for idas modules for
user feedback.

3. The optional function N VDotProdMulti is only used when Classical Gram-Schmidt is enabled
with spgmr or spfgmr. The remaining operations from Tables 9.1.2 and 9.1.3 not listed above
are unused and a user-supplied nvector module for idas could omit these operations.

4. This routine is only used when an iterative or matrix iterative sunlinsol module is supplied to
idas.

Of the functions listed in Table 9.1.1, N DotProd, N VWL2Norm, N VL1Norm, N VInvTest, and
N VGetCommunicator are not used by idas. Therefore a user-supplied nvector module for idas
could omit these functions (although some may be needed by sunnonlinsol or sunlinsol modules).

9.3 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

sunindextype length;

booleantype own_data;

realtype *data;

};

The header file to include when using this module is nvector serial.h. The installed module
library to link to is libsundials nvecserial.lib where .lib is typically .so for shared libraries
and .a for static libraries.

9.3.1 NVECTOR SERIAL accessor macros

The following macros are provided to access the content of an nvector serial vector. The suffix S

in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )



204 Description of the NVECTOR module

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

9.3.2 NVECTOR SERIAL functions

The nvector serial module defines serial implementations of all vector operations listed in Tables
9.1.1, 9.1.2, 9.1.3 and 9.1.4. Their names are obtained from those in these tables by appending the
suffix Serial (e.g. N VDestroy Serial). All the standard vector operations listed in 9.1.1 with
the suffix Serial appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy Serial).

The module nvector serial provides the following additional user-callable routines:

N VNew Serial

Prototype N Vector N VNew Serial(sunindextype vec length);

Description This function creates and allocates memory for a serial N Vector. Its only argument is
the vector length.

F2003 Name This function is callable as FN VNew Serial when using the Fortran 2003 interface mod-
ule.

N VNewEmpty Serial

Prototype N Vector N VNewEmpty Serial(sunindextype vec length);

Description This function creates a new serial N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Serial when using the Fortran 2003 interface
module.

N VMake Serial

Prototype N Vector N VMake Serial(sunindextype vec length, realtype *v data);

Description This function creates and allocates memory for a serial vector with user-provided data
array.

(This function does not allocate memory for v data itself.)
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F2003 Name This function is callable as FN VMake Serial when using the Fortran 2003 interface
module.

N VCloneVectorArray Serial

Prototype N Vector *N VCloneVectorArray Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors.

F2003 Name This function is callable as FN VCloneVectorArray Serial when using the Fortran 2003
interface module.

N VCloneVectorArrayEmpty Serial

Prototype N Vector *N VCloneVectorArrayEmpty Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty Serial when using the For-
tran 2003 interface module.

N VDestroyVectorArray Serial

Prototype void N VDestroyVectorArray Serial(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Serial or with
N VCloneVectorArrayEmpty Serial.

F2003 Name This function is callable as FN VDestroyVectorArray Serial when using the Fortran
2003 interface module.

N VPrint Serial

Prototype void N VPrint Serial(N Vector v);

Description This function prints the content of a serial vector to stdout.

F2003 Name This function is callable as FN VPrint Serial when using the Fortran 2003 interface
module.

N VPrintFile Serial

Prototype void N VPrintFile Serial(N Vector v, FILE *outfile);

Description This function prints the content of a serial vector to outfile.

F2003 Name This function is callable as FN VPrintFile Serial when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the nvector serial module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Serial, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Serial

will have the default settings for the nvector serial module.
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N VEnableFusedOps Serial

Prototype int N VEnableFusedOps Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps Serial when using the Fortran 2003
interface module.

N VEnableLinearCombination Serial

Prototype int N VEnableLinearCombination Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination Serial when using the For-
tran 2003 interface module.

N VEnableScaleAddMulti Serial

Prototype int N VEnableScaleAddMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti Serial when using the Fortran
2003 interface module.

N VEnableDotProdMulti Serial

Prototype int N VEnableDotProdMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti Serial when using the Fortran
2003 interface module.

N VEnableLinearSumVectorArray Serial

Prototype int N VEnableLinearSumVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray Serial when using the
Fortran 2003 interface module.

N VEnableScaleVectorArray Serial

Prototype int N VEnableScaleVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableScaleVectorArray Serial when using the For-
tran 2003 interface module.

N VEnableConstVectorArray Serial

Prototype int N VEnableConstVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray Serial when using the For-
tran 2003 interface module.

N VEnableWrmsNormVectorArray Serial

Prototype int N VEnableWrmsNormVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray Serial when using the
Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray Serial

Prototype int N VEnableWrmsNormMaskVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the serial vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray Serial when using
the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray Serial

Prototype int N VEnableScaleAddMultiVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Serial

Prototype int N VEnableLinearCombinationVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the serial vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.
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• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field !

own data = SUNFALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

9.3.3 NVECTOR SERIAL Fortran interfaces

The nvector serial module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fnvector serial mod Fortran module defines interfaces to all nvector serial C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Serial is
interfaced as FN VNew Serial.

The Fortran 2003 nvector serial interface module can be accessed with the use statement,
i.e. use fnvector serial mod, and linking to the library libsundials fnvectorserial mod.lib in
addition to the C library. For details on where the library and module file fnvector serial mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fnvectorserial mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector serial module also includes a
Fortran-callable function FNVINITS(code, NEQ, IER), to initialize this nvector serial module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

9.4 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The header file to include when using this module is nvector parallel.h. The installed module
library to link to is libsundials nvecparallel.lib where .lib is typically .so for shared libraries
and .a for static libraries.
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9.4.1 NVECTOR PARALLEL accessor macros

The following macros are provided to access the content of a nvector parallel vector. The suffix
P in the names denotes the distributed memory parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

9.4.2 NVECTOR PARALLEL functions

The nvector parallel module defines parallel implementations of all vector operations listed in
Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4. Their names are obtained from those in these tables by appending
the suffix Parallel (e.g. N VDestroy Parallel). The module nvector parallel provides the
following additional user-callable routines:
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N VNew Parallel

Prototype N Vector N VNew Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates and allocates memory for a parallel vector.

F2003 Name This function is callable as FN VNew Parallel when using the Fortran 2003 interface
module.

N VNewEmpty Parallel

Prototype N Vector N VNewEmpty Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates a new parallel N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Parallel when using the Fortran 2003 inter-
face module.

N VMake Parallel

Prototype N Vector N VMake Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *v data);

Description This function creates and allocates memory for a parallel vector with user-provided data
array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake Parallel when using the Fortran 2003 interface
module.

N VCloneVectorArray Parallel

Prototype N Vector *N VCloneVectorArray Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors.

F2003 Name This function is callable as FN VCloneVectorArray Parallel when using the Fortran
2003 interface module.

N VCloneVectorArrayEmpty Parallel

Prototype N Vector *N VCloneVectorArrayEmpty Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty Parallel when using the For-
tran 2003 interface module.

N VDestroyVectorArray Parallel

Prototype void N VDestroyVectorArray Parallel(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Parallel or with
N VCloneVectorArrayEmpty Parallel.

F2003 Name This function is callable as FN VDestroyVectorArray Parallel when using the Fortran
2003 interface module.
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N VGetLocalLength Parallel

Prototype sunindextype N VGetLocalLength Parallel(N Vector v);

Description This function returns the local vector length.

F2003 Name This function is callable as FN VGetLocalLength Parallel when using the Fortran 2003
interface module.

N VPrint Parallel

Prototype void N VPrint Parallel(N Vector v);

Description This function prints the local content of a parallel vector to stdout.

F2003 Name This function is callable as FN VPrint Parallel when using the Fortran 2003 interface
module.

N VPrintFile Parallel

Prototype void N VPrintFile Parallel(N Vector v, FILE *outfile);

Description This function prints the local content of a parallel vector to outfile.

F2003 Name This function is callable as FN VPrintFile Parallel when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the nvector parallel module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Parallel, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone with that vector.
This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors
inherit the same enable/disable options as the vector they are cloned from while vectors created with
N VNew Parallel will have the default settings for the nvector parallel module.

N VEnableFusedOps Parallel

Prototype int N VEnableFusedOps Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps Parallel when using the Fortran 2003
interface module.

N VEnableLinearCombination Parallel

Prototype int N VEnableLinearCombination Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination Parallel when using the
Fortran 2003 interface module.

N VEnableScaleAddMulti Parallel

Prototype int N VEnableScaleAddMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parallel vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableScaleAddMulti Parallel when using the For-
tran 2003 interface module.

N VEnableDotProdMulti Parallel

Prototype int N VEnableDotProdMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti Parallel when using the Fortran
2003 interface module.

N VEnableLinearSumVectorArray Parallel

Prototype int N VEnableLinearSumVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray Parallel when using
the Fortran 2003 interface module.

N VEnableScaleVectorArray Parallel

Prototype int N VEnableScaleVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray Parallel when using the
Fortran 2003 interface module.

N VEnableConstVectorArray Parallel

Prototype int N VEnableConstVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray Parallel when using the
Fortran 2003 interface module.

N VEnableWrmsNormVectorArray Parallel

Prototype int N VEnableWrmsNormVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray Parallel when using the
Fortran 2003 interface module.



9.4 The NVECTOR PARALLEL implementation 213

N VEnableWrmsNormMaskVectorArray Parallel

Prototype int N VEnableWrmsNormMaskVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parallel vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray Parallel when us-
ing the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray Parallel

Prototype int N VEnableScaleAddMultiVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector
array to multiple vector arrays operation in the parallel vector. The return value is 0

for success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Parallel

Prototype int N VEnableLinearCombinationVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parallel vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the !

field own data = SUNFALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

9.4.3 NVECTOR PARALLEL Fortran interfaces

For solvers that include a Fortran 77 interface module, the nvector parallel module also in-
cludes a Fortran-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize
this nvector parallel module. Here COMM is the MPI communicator, code is an input solver
id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NLOCAL and NGLOBAL are the local and
global vector sizes, respectively (declared so as to match C type long int); and IER is an error
return flag equal 0 for success and -1 for failure. NOTE: If the header file sundials config.h de- !

fines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI implementation used to build sundials
includes the MPI Comm f2c function), then COMM can be any valid MPI communicator. Otherwise,
MPI COMM WORLD will be used, so just pass an integer value as a placeholder.
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9.5 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_OpenMP {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};

The header file to include when using this module is nvector openmp.h. The installed module
library to link to is libsundials nvecopenmp.lib where .lib is typically .so for shared libraries
and .a for static libraries. The Fortran module file to use when using the Fortran 2003 interface
to this module is fnvector openmp mod.mod.

9.5.1 NVECTOR OPENMP accessor macros

The following macros are provided to access the content of an nvector openmp vector. The suffix
OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v

sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )
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• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

9.5.2 NVECTOR OPENMP functions

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4. Their names are obtained from those in these tables by appending
the suffix OpenMP (e.g. N VDestroy OpenMP). All the standard vector operations listed in 9.1.1 with
the suffix OpenMP appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy OpenMP).

The module nvector openmp provides the following additional user-callable routines:

N VNew OpenMP

Prototype N Vector N VNew OpenMP(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a OpenMP N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew OpenMP when using the Fortran 2003 interface mod-
ule.

N VNewEmpty OpenMP

Prototype N Vector N VNewEmpty OpenMP(sunindextype vec length, int num threads)

Description This function creates a new OpenMP N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty OpenMP when using the Fortran 2003 interface
module.

N VMake OpenMP

Prototype N Vector N VMake OpenMP(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a OpenMP vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake OpenMP when using the Fortran 2003 interface
module.

N VCloneVectorArray OpenMP

Prototype N Vector *N VCloneVectorArray OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors.

F2003 Name This function is callable as FN VCloneVectorArray OpenMP when using the Fortran 2003
interface module.
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N VCloneVectorArrayEmpty OpenMP

Prototype N Vector *N VCloneVectorArrayEmpty OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty OpenMP when using the For-
tran 2003 interface module.

N VDestroyVectorArray OpenMP

Prototype void N VDestroyVectorArray OpenMP(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMP or with N VCloneVectorArrayEmpty OpenMP.

F2003 Name This function is callable as FN VDestroyVectorArray OpenMP when using the Fortran
2003 interface module.

N VPrint OpenMP

Prototype void N VPrint OpenMP(N Vector v)

Description This function prints the content of an OpenMP vector to stdout.

F2003 Name This function is callable as FN VPrint OpenMP when using the Fortran 2003 interface
module.

N VPrintFile OpenMP

Prototype void N VPrintFile OpenMP(N Vector v, FILE *outfile)

Description This function prints the content of an OpenMP vector to outfile.

F2003 Name This function is callable as FN VPrintFile OpenMP when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the nvector openmp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMP, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMP

will have the default settings for the nvector openmp module.

N VEnableFusedOps OpenMP

Prototype int N VEnableFusedOps OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps OpenMP when using the Fortran 2003
interface module.
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N VEnableLinearCombination OpenMP

Prototype int N VEnableLinearCombination OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination OpenMP when using the For-
tran 2003 interface module.

N VEnableScaleAddMulti OpenMP

Prototype int N VEnableScaleAddMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the OpenMP vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti OpenMP when using the Fortran
2003 interface module.

N VEnableDotProdMulti OpenMP

Prototype int N VEnableDotProdMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti OpenMP when using the Fortran
2003 interface module.

N VEnableLinearSumVectorArray OpenMP

Prototype int N VEnableLinearSumVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray OpenMP when using the
Fortran 2003 interface module.

N VEnableScaleVectorArray OpenMP

Prototype int N VEnableScaleVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray OpenMP when using the For-
tran 2003 interface module.

N VEnableConstVectorArray OpenMP

Prototype int N VEnableConstVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableConstVectorArray OpenMP when using the For-
tran 2003 interface module.

N VEnableWrmsNormVectorArray OpenMP

Prototype int N VEnableWrmsNormVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray OpenMP when using the
Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray OpenMP

Prototype int N VEnableWrmsNormMaskVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the OpenMP vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray OpenMP when using
the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray OpenMP

Prototype int N VEnableScaleAddMultiVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the OpenMP vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray OpenMP

Prototype int N VEnableLinearCombinationVectorArray OpenMP(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneVectorArrayEmpty OpenMP set the field!

own data = SUNFALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.



9.6 The NVECTOR PTHREADS implementation 219

9.5.3 NVECTOR OPENMP Fortran interfaces

The nvector openmp module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector openmp mod Fortran module defines interfaces to most nvector openmp C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew OpenMP is
interfaced as FN VNew OpenMP.

The Fortran 2003 nvector openmp interface module can be accessed with the use statement,
i.e. use fnvector openmp mod, and linking to the library libsundials fnvectoropenmp mod.lib in
addition to the C library. For details on where the library and module file fnvector openmp mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector openmp module also includes
a Fortran-callable function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

9.6 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, denoted nvector pthreads,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, a boolean flag own data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};

The header file to include when using this module is nvector pthreads.h. The installed module
library to link to is libsundials nvecpthreads.lib where .lib is typically .so for shared libraries
and .a for static libraries.

9.6.1 NVECTOR PTHREADS accessor macros

The following macros are provided to access the content of an nvector pthreads vector. The suffix
PT in the names denotes the Pthreads version.
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• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

9.6.2 NVECTOR PTHREADS functions

The nvector pthreads module defines Pthreads implementations of all vector operations listed in
Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4. Their names are obtained from those in these tables by appending
the suffix Pthreads (e.g. N VDestroy Pthreads). All the standard vector operations listed in 9.1.1
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FN VDestroy Pthreads). The
module nvector pthreads provides the following additional user-callable routines:

N VNew Pthreads

Prototype N Vector N VNew Pthreads(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a Pthreads N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew Pthreads when using the Fortran 2003 interface
module.
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N VNewEmpty Pthreads

Prototype N Vector N VNewEmpty Pthreads(sunindextype vec length, int num threads)

Description This function creates a new Pthreads N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Pthreads when using the Fortran 2003 inter-
face module.

N VMake Pthreads

Prototype N Vector N VMake Pthreads(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a Pthreads vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake Pthreads when using the Fortran 2003 interface
module.

N VCloneVectorArray Pthreads

Prototype N Vector *N VCloneVectorArray Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors.

F2003 Name This function is callable as FN VCloneVectorArray Pthreads when using the Fortran
2003 interface module.

N VCloneVectorArrayEmpty Pthreads

Prototype N Vector *N VCloneVectorArrayEmpty Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty Pthreads when using the For-
tran 2003 interface module.

N VDestroyVectorArray Pthreads

Prototype void N VDestroyVectorArray Pthreads(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Pthreads or with
N VCloneVectorArrayEmpty Pthreads.

F2003 Name This function is callable as FN VDestroyVectorArray Pthreads when using the Fortran
2003 interface module.

N VPrint Pthreads

Prototype void N VPrint Pthreads(N Vector v)

Description This function prints the content of a Pthreads vector to stdout.

F2003 Name This function is callable as FN VPrint Pthreads when using the Fortran 2003 interface
module.
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N VPrintFile Pthreads

Prototype void N VPrintFile Pthreads(N Vector v, FILE *outfile)

Description This function prints the content of a Pthreads vector to outfile.

F2003 Name This function is callable as FN VPrintFile Pthreads when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the nvector pthreads module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Pthreads, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Pthreads

will have the default settings for the nvector pthreads module.

N VEnableFusedOps Pthreads

Prototype int N VEnableFusedOps Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps Pthreads when using the Fortran 2003
interface module.

N VEnableLinearCombination Pthreads

Prototype int N VEnableLinearCombination Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination Pthreads when using the
Fortran 2003 interface module.

N VEnableScaleAddMulti Pthreads

Prototype int N VEnableScaleAddMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the Pthreads vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti Pthreads when using the For-
tran 2003 interface module.

N VEnableDotProdMulti Pthreads

Prototype int N VEnableDotProdMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti Pthreads when using the Fortran
2003 interface module.
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N VEnableLinearSumVectorArray Pthreads

Prototype int N VEnableLinearSumVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray Pthreads when using
the Fortran 2003 interface module.

N VEnableScaleVectorArray Pthreads

Prototype int N VEnableScaleVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray Pthreads when using the
Fortran 2003 interface module.

N VEnableConstVectorArray Pthreads

Prototype int N VEnableConstVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray Pthreads when using the
Fortran 2003 interface module.

N VEnableWrmsNormVectorArray Pthreads

Prototype int N VEnableWrmsNormVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray Pthreads when using the
Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray Pthreads

Prototype int N VEnableWrmsNormMaskVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the Pthreads vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray Pthreads when us-
ing the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray Pthreads

Prototype int N VEnableScaleAddMultiVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the Pthreads vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearCombinationVectorArray Pthreads

Prototype int N VEnableLinearCombinationVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneVectorArrayEmpty Pthreads set the!

field own data = SUNFALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector pthreads implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

9.6.3 NVECTOR PTHREADS Fortran interfaces

The nvector pthreads module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector pthreads mod Fortran module defines interfaces to most nvector pthreads C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Pthreads is
interfaced as FN VNew Pthreads.

The Fortran 2003 nvector pthreads interface module can be accessed with the use statement,
i.e. use fnvector pthreads mod, and linking to the library libsundials fnvectorpthreads mod.lib
in addition to the C library. For details on where the library and module file fnvector pthreads mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the nvector pthreads module also includes
a Fortran-callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

9.7 The NVECTOR PARHYP implementation

The nvector parhyp implementation of the nvector module provided with sundials is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type HYPRE ParVector, an MPI communicator, and a
boolean flag own parvector indicating ownership of the hypre parallel vector object x.
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struct _N_VectorContent_ParHyp {

sunindextype local_length;

sunindextype global_length;

booleantype own_parvector;

MPI_Comm comm;

HYPRE_ParVector x;

};

The header file to include when using this module is nvector parhyp.h. The installed module library
to link to is libsundials nvecparhyp.lib where .lib is typically .so for shared libraries and .a

for static libraries.

Unlike native sundials vector types, nvector parhyp does not provide macros to access its
member variables. Note that nvector parhyp requires sundials to be built with MPI support.

9.7.1 NVECTOR PARHYP functions

The nvector parhyp module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2, 9.1.3, and 9.1.4, except for N VSetArrayPointer and N VGetArrayPointer, because access-
ing raw vector data is handled by low-level hypre functions. As such, this vector is not available
for use with sundials Fortran interfaces. When access to raw vector data is needed, one should
extract the hypre vector first, and then use hypre methods to access the data. Usage examples of
nvector parhyp are provided in the cvAdvDiff non ph.c example program for cvode [40] and the
ark diurnal kry ph.c example program for arkode [50].

The names of parhyp methods are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by
appending the suffix ParHyp (e.g. N VDestroy ParHyp). The module nvector parhyp provides the
following additional user-callable routines:

N VNewEmpty ParHyp

Prototype N Vector N VNewEmpty ParHyp(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new parhyp N Vector with the pointer to the hypre vector set
to NULL.

N VMake ParHyp

Prototype N Vector N VMake ParHyp(HYPRE ParVector x)

Description This function creates an N Vector wrapper around an existing hypre parallel vector. It
does not allocate memory for x itself.

N VGetVector ParHyp

Prototype HYPRE ParVector N VGetVector ParHyp(N Vector v)

Description This function returns the underlying hypre vector.

N VCloneVectorArray ParHyp

Prototype N Vector *N VCloneVectorArray ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors.
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N VCloneVectorArrayEmpty ParHyp

Prototype N Vector *N VCloneVectorArrayEmpty ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N VDestroyVectorArray ParHyp

Prototype void N VDestroyVectorArray ParHyp(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray ParHyp or with N VCloneVectorArrayEmpty ParHyp.

N VPrint ParHyp

Prototype void N VPrint ParHyp(N Vector v)

Description This function prints the local content of a parhyp vector to stdout.

N VPrintFile ParHyp

Prototype void N VPrintFile ParHyp(N Vector v, FILE *outfile)

Description This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the nvector parhyp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake ParHyp, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake ParHyp

will have the default settings for the nvector parhyp module.

N VEnableFusedOps ParHyp

Prototype int N VEnableFusedOps ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination ParHyp

Prototype int N VEnableLinearCombination ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti ParHyp

Prototype int N VEnableScaleAddMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableDotProdMulti ParHyp

Prototype int N VEnableDotProdMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray ParHyp

Prototype int N VEnableLinearSumVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray ParHyp

Prototype int N VEnableScaleVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray ParHyp

Prototype int N VEnableConstVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray ParHyp

Prototype int N VEnableWrmsNormVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray ParHyp

Prototype int N VEnableWrmsNormMaskVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parhyp vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray ParHyp

Prototype int N VEnableScaleAddMultiVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearCombinationVectorArray ParHyp

Prototype int N VEnableLinearCombinationVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parhyp vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector ParHyp, v, it is recommended to
extract the hypre vector via x vec = N VGetVector ParHyp(v) and then access components
using appropriate hypre functions.

• N VNewEmpty ParHyp, N VMake ParHyp, and N VCloneVectorArrayEmpty ParHyp set the field!

own parvector to SUNFALSE. N VDestroy ParHyp and N VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N Vector with own parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the nvector parhyp implementation that have!

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

9.8 The NVECTOR PETSC implementation

The nvector petsc module is an nvector wrapper around the petsc vector. It defines the content
field of a N Vector to be a structure containing the global and local lengths of the vector, a pointer
to the petsc vector, an MPI communicator, and a boolean flag own data indicating ownership of the
wrapped petsc vector.

struct _N_VectorContent_Petsc {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

Vec *pvec;

MPI_Comm comm;

};

The header file to include when using this module is nvector petsc.h. The installed module library
to link to is libsundials nvecpetsc.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike native sundials vector types, nvector petsc does not provide macros to access its mem-
ber variables. Note that nvector petsc requires sundials to be built with MPI support.

9.8.1 NVECTOR PETSC functions

The nvector petsc module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2, 9.1.3, and 9.1.4, except for N VGetArrayPointer and N VSetArrayPointer. As such, this vector
cannot be used with sundials Fortran interfaces. When access to raw vector data is needed, it is
recommended to extract the petsc vector first, and then use petsc methods to access the data. Usage
examples of nvector petsc are provided in example programs for ida [38].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix Petsc (e.g. N VDestroy Petsc). The module nvector petsc provides the
following additional user-callable routines:



9.8 The NVECTOR PETSC implementation 229

N VNewEmpty Petsc

Prototype N Vector N VNewEmpty Petsc(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new nvector wrapper with the pointer to the wrapped petsc
vector set to (NULL). It is used by the N VMake Petsc and N VClone Petsc implementa-
tions.

N VMake Petsc

Prototype N Vector N VMake Petsc(Vec *pvec)

Description This function creates and allocates memory for an nvector petsc wrapper around a
user-provided petsc vector. It does not allocate memory for the vector pvec itself.

N VGetVector Petsc

Prototype Vec *N VGetVector Petsc(N Vector v)

Description This function returns a pointer to the underlying petsc vector.

N VCloneVectorArray Petsc

Prototype N Vector *N VCloneVectorArray Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors.

N VCloneVectorArrayEmpty Petsc

Prototype N Vector *N VCloneVectorArrayEmpty Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors, each with
pointers to petsc vectors set to (NULL).

N VDestroyVectorArray Petsc

Prototype void N VDestroyVectorArray Petsc(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Petsc or with N VCloneVectorArrayEmpty Petsc.

N VPrint Petsc

Prototype void N VPrint Petsc(N Vector v)

Description This function prints the global content of a wrapped petsc vector to stdout.

N VPrintFile Petsc

Prototype void N VPrintFile Petsc(N Vector v, const char fname[])

Description This function prints the global content of a wrapped petsc vector to fname.

By default all fused and vector array operations are disabled in the nvector petsc module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake Petsc, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake Petsc

will have the default settings for the nvector petsc module.
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N VEnableFusedOps Petsc

Prototype int N VEnableFusedOps Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Petsc

Prototype int N VEnableLinearCombination Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Petsc

Prototype int N VEnableScaleAddMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Petsc

Prototype int N VEnableDotProdMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Petsc

Prototype int N VEnableLinearSumVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Petsc

Prototype int N VEnableScaleVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Petsc

Prototype int N VEnableConstVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N VEnableWrmsNormVectorArray Petsc

Prototype int N VEnableWrmsNormVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Petsc

Prototype int N VEnableWrmsNormMaskVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the petsc vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Petsc

Prototype int N VEnableScaleAddMultiVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Petsc

Prototype int N VEnableLinearCombinationVectorArray Petsc(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the petsc vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Petsc, v, it is recommeded to
extract the petsc vector via x vec = N VGetVector Petsc(v) and then access components
using appropriate petsc functions.

• The functions N VNewEmpty Petsc, N VMake Petsc, and N VCloneVectorArrayEmpty Petsc set !

the field own data to SUNFALSE. N VDestroy Petsc and N VDestroyVectorArray Petsc will not
attempt to free the pointer pvec for any N Vector with own data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the nvector petsc implementation that have !

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

9.9 The NVECTOR CUDA implementation

The nvector cuda module is an nvector implementation in the cuda language. The module
allows for sundials vector kernels to run on NVIDIA GPU devices. It is intended for users who are
already familiar with cuda and GPU programming. Building this vector module requires a CUDA
compiler and, by extension, a C++ compiler. The vector content layout is as follows:
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struct _N_VectorContent_Cuda

{

sunindextype length;

booleantype own_exec;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNCudaExecPolicy* stream_exec_policy;

SUNCudaExecPolicy* reduce_exec_policy;

SUNMemoryHelper mem_helper;

void* priv; /* ’private’ data */

};

typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), ownership flags for the * exec policy fields and
the mem helper field, SUNMemory objects for the vector data on the host and the device, pointers to
SUNCudaExecPolicy implementations that control how the CUDA kernels are launched for streaming
and reduction vector kernels, a SUNMemoryHelper object, and a private data structure which holds
additonal members that should not be accessed directly.

When instantiated with N VNew Cuda, the underlying data will be allocated memory on both the
host and the device. Alternatively, a user can provide host and device data arrays by using the
N VMake Cuda constructor. To use cuda managed memory, the constructors N VNewManaged Cuda

and
N VMakeManaged Cuda are provided. Details on each of these constructors are provided below.

To use the nvector cuda module, the header file to include is nvector cuda.h, and the library
to link to is libsundials nveccuda.lib . The extension .lib is typically .so for shared libraries
and .a for static libraries.

9.9.1 NVECTOR CUDA functions

Unlike other native sundials vector types, nvector cuda does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N VGetHostArrayPointer Cuda

Prototype realtype *N VGetHostArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Cuda

Prototype realtype *N VGetDeviceArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VSetHostArrayPointer Cuda

Prototype realtype *N VSetHostArrayPointer Cuda(N Vector v)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N VSetDeviceArrayPointer Cuda

Prototype realtype *N VSetDeviceArrayPointer Cuda(N Vector v)
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Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N VIsManagedMemory Cuda

Prototype booleantype *N VIsManagedMemory Cuda(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector cuda module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2, 9.1.3 and 9.1.4, except for N VSetArrayPointer and N VGetArrayPointer unless managed
memory is used. As such, this vector can only be used with the sundials Fortran interfaces, and
the sundials direct solvers and preconditioners when using managed memory. The nvector cuda
module provides separate functions to access data on the host and on the device for the unmanaged
memory use case. It also provides methods for copying from the host to the device and vice versa.
Usage examples of nvector cuda are provided in some example programs for cvode [40].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix Cuda (e.g. N VDestroy Cuda). The module nvector cuda provides the
following functions:

N VNew Cuda

Prototype N Vector N VNew Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated on both the host and device.

N VNewManaged Cuda

Prototype N Vector N VNewManaged Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated in managed memory.

N VNewWithMemHelp Cuda

Prototype N Vector N VNewWithMemHelp Cuda(sunindextype length, booleantype use managed mem,

SUNMemoryHelper helper);

Description This function creates an nvector cuda which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N VNewEmpty Cuda

Prototype N Vector N VNewEmpty Cuda()

Description This function creates a new nvector wrapper with the pointer to the wrapped cuda
vector set to NULL. It is used by the N VNew Cuda, N VMake Cuda, and N VClone Cuda

implementations.

N VMake Cuda

Prototype N Vector N VMake Cuda(sunindextype length, realtype *h data, realtype *dev data)

Description This function creates an nvector cuda with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.
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N VMakeManaged Cuda

Prototype N Vector N VMakeManaged Cuda(sunindextype length, realtype *vdata)

Description This function creates an nvector cuda with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N VMakeWithManagedAllocator Cuda

Prototype N Vector N VMakeWithManagedAllocator Cuda(sunindextype length, void* (*allocfn)(size t

size), void (*freefn)(void* ptr));

Description This function creates an nvector cuda with a user-supplied memory allocator. It
requires the user to provide a corresponding free function as well. The memory allocated
by the allocator function must behave like CUDA managed memory.

This function is deprecated and will be removed in the next major release. Use N VNewWithMemHelp Cuda!

instead.

The module nvector cuda also provides the following user-callable routines:

N VSetKernelExecPolicy Cuda

Prototype void N VSetKernelExecPolicy Cuda(N Vector v, SUNCudaExecPolicy* stream exec policy,

SUNCudaExecPolicy* reduce exec policy);

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction CUDA kernels. By default the vector is
setup to use the SUNCudaThreadDirectExecPolicy and SUNCudaBlockReduceExecPolicy.
Any custom execution policy for reductions must ensure that the grid dimensions (num-
ber of thread blocks) is a multiple of the CUDA warp size (32). See section 9.9.2 below
for more information about the SUNCudaExecPolicy class.

Note: All vectors used in a single instance of a sundials solver must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

N VSetCudaStream Cuda

Prototype void N VSetCudaStream Cuda(N Vector v, cudaStream t *stream)

Description This function sets the cuda stream that all vector kernels will be launched on. By
default an nvector cuda uses the default cuda stream.

Note: All vectors used in a single instance of a sundials solver must use the same
cuda stream. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

This function will be removed in the next major release, user should utilize the N VSetKernelExecPolicy Cuda!

function instead.

N VCopyToDevice Cuda

Prototype void N VCopyToDevice Cuda(N Vector v)

Description This function copies host vector data to the device.
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N VCopyFromDevice Cuda

Prototype void N VCopyFromDevice Cuda(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Cuda

Prototype void N VPrint Cuda(N Vector v)

Description This function prints the content of a cuda vector to stdout.

N VPrintFile Cuda

Prototype void N VPrintFile Cuda(N Vector v, FILE *outfile)

Description This function prints the content of a cuda vector to outfile.

By default all fused and vector array operations are disabled in the nvector cuda module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N VNew Cuda, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Cuda will
have the default settings for the nvector cuda module.

N VEnableFusedOps Cuda

Prototype int N VEnableFusedOps Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Cuda

Prototype int N VEnableLinearCombination Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Cuda

Prototype int N VEnableScaleAddMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Cuda

Prototype int N VEnableDotProdMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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N VEnableLinearSumVectorArray Cuda

Prototype int N VEnableLinearSumVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Cuda

Prototype int N VEnableScaleVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Cuda

Prototype int N VEnableConstVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Cuda

Prototype int N VEnableWrmsNormVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Cuda

Prototype int N VEnableWrmsNormMaskVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the cuda vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Cuda

Prototype int N VEnableScaleAddMultiVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Cuda

Prototype int N VEnableLinearCombinationVectorArray Cuda(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the cuda vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.
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Notes

• When there is a need to access components of an N Vector Cuda, v, it is recommeded to use
functions N VGetDeviceArrayPointer Cuda or N VGetHostArrayPointer Cuda. However, when
using managed memory, the function N VGetArrayPointer may also be used.

• Performance is better if the SUNMemoryHelper provided supports SUNMEMTYPE PINNED; the de-
fault SUNMemoryHelper does provide this support. In the case that it does, then the buffers used
for reductions will be allocated as pinned memory.

• To maximize efficiency, vector operations in the nvector cuda implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

9.9.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by ker-
nels within SUNDIALS are defined by objects of the sundials::CudaExecPolicy abstract class type
(this class can be accessed in the global namespace as SUNCudaExecPolicy). Thus, users may provide
custom execution policies that fit the needs of their problem. The sundials::CudaExecPolicy is
defined in the header file sundials cuda policies.hpp, and is as follows:

class CudaExecPolicy

{

public:

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;

virtual cudaStream_t stream() const = 0;

virtual CudaExecPolicy* clone() const = 0;

virtual ~CudaExecPolicy() {}

};

To define a custom execution policy, a user simply needs to create a class that inherits from the ab-
stract class and implements the methods. The sundials provided sundials::CudaThreadDirectExecPolicy

(aka in the global namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what
a custom execution policy may look like:

class CudaThreadDirectExecPolicy : public CudaExecPolicy

{

public:

CudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)

: blockDim_(blockDim), stream_(stream)

{}

CudaThreadDirectExecPolicy(const CudaThreadDirectExecPolicy& ex)

: blockDim_(ex.blockDim_), stream_(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{

return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{
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return blockDim_;

}

virtual cudaStream_t stream() const

{

return stream_;

}

virtual CudaExecPolicy* clone() const

{

return static_cast<CudaExecPolicy*>(new CudaThreadDirectExecPolicy(*this));

}

private:

const cudaStream_t stream_;

const size_t blockDim_;

};

In total, sundials provides 3 execution policies:

1. SUNCudaThreadDirectExecPolicy(const size t blockDim, const cudaStream t stream =

0) maps each CUDA thread to a work unit. The number of threads per block (blockDim) can
be set to anything. The grid size will be calculated so that there are enough threads for one
thread per element. If a CUDA stream is provided, it will be used to execute the kernel.

2. SUNCudaGridStrideExecPolicy(const size t blockDim, const size t gridDim, const cudaStream t

stream = 0) is for kernels that use grid stride loops. The number of threads per block (block-
Dim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a
CUDA stream is provided, it will be used to execute the kernel.

3. SUNCudaBlockReduceExecPolicy(const size t blockDim, const size t gridDim, const cudaStream t

stream = 0) is for kernels performing a reduction across individual thread blocks. The number
of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size
will be chosen so that there is enough threads for one thread per work unit. If a CUDA stream
is provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created
like so:

cudaStream_t stream;

cudaStreamCreate(&stream);

SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple sundials data structures since they do
not hold any modifiable state information.

9.10 The NVECTOR HIP implementation

The nvector hip module is an nvector implementation using the AMD ROCm hip library. The
module allows for sundials vector kernels to run on AMD or NVIDIA GPU devices. It is intended for
users who are already familiar with hip and GPU programming. Building this vector module requires
the HIP-clang compiler. The vector content layout is as follows:
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struct _N_VectorContent_Hip

{

sunindextype length;

booleantype own_exec;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNHipExecPolicy* stream_exec_policy;

SUNHipExecPolicy* reduce_exec_policy;

SUNMemoryHelper mem_helper;

void* priv; /* ’private’ data */

};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns
the data (i.e. it is in charge of freeing the data), pointers to vector data on the host and the device,
pointers to SUNHipExecPolicy implementations that control how the HIP kernels are launched for
streaming and reduction vector kernels, and a private data structure which holds additional members
that should not be accessed directly.

When instantiated with N VNew Hip, the underlying data will be allocated memory on both the
host and the device. Alternatively, a user can provide host and device data arrays by using the
N VMake Hip constructor. To use hip managed memory, the constructors N VNewManaged Hip and
N VMakeManaged Hip are provided. Details on each of these constructors are provided below.

To use the nvector hip module, the header file to include is nvector hip.h, and the library to
link to is libsundials nvechip.lib . The extension .lib is typically .so for shared libraries and
.a for static libraries.

9.10.1 NVECTOR HIP functions

Unlike other native sundials vector types, nvector hip does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:

N VGetHostArrayPointer Hip

Prototype realtype *N VGetHostArrayPointer Hip(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Hip

Prototype realtype *N VGetDeviceArrayPointer Hip(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VIsManagedMemory Hip

Prototype booleantype *N VIsManagedMemory Hip(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector hip module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2, 9.1.3 and 9.1.4, except for N VSetArrayPointer. The names of vector operations are obtained
from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by appending the suffix Hip (e.g. N VDestroy Hip).
The module nvector hip provides the following functions:
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N VNew Hip

Prototype N Vector N VNew Hip(sunindextype length)

Description This function creates an empty hip N Vector with the data pointers set to NULL.

N VNewManaged Hip

Prototype N Vector N VNewManaged Hip(sunindextype length)

Description This function creates and allocates memory for a hip N Vector. The vector data array
is allocated in managed memory.

N VNewEmpty Hip

Prototype N Vector N VNewEmpty Hip()

Description This function creates a new nvector wrapper with the pointer to the wrapped hip
vector set to NULL. It is used by the N VNew Hip, N VMake Hip, and N VClone Hip im-
plementations.

N VMake Hip

Prototype N Vector N VMake Hip(sunindextype length, realtype *h data, realtype *dev data)

Description This function creates an nvector hip with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.

N VMakeManaged Hip

Prototype N Vector N VMakeManaged Hip(sunindextype length, realtype *vdata)

Description This function creates an nvector hip with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

The module nvector hip also provides the following user-callable routines:

N VSetKernelExecPolicy Hip

Prototype void N VSetKernelExecPolicy Hip(N Vector v,

SUNHipExecPolicy* stream exec policy,

SUNHipExecPolicy* reduce exec policy);

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction HIP kernels. By default the vector is setup
to use the SUNHipThreadDirectExecPolicy and SUNHipBlockReduceExecPolicy. Any
custom execution policy for reductions must ensure that the grid dimensions (number
of thread blocks) is a multiple of the HIP warp size (64 when targeting AMD GPUs and
32 when targing NVIDIA GPUs). See section 9.10.2 below for more information about
the SUNHipExecPolicy class.

Note: All vectors used in a single instance of a sundials solver must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

N VCopyToDevice Hip

Prototype void N VCopyToDevice Hip(N Vector v)

Description This function copies host vector data to the device.
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N VCopyFromDevice Hip

Prototype void N VCopyFromDevice Hip(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Hip

Prototype void N VPrint Hip(N Vector v)

Description This function prints the content of a hip vector to stdout.

N VPrintFile Hip

Prototype void N VPrintFile Hip(N Vector v, FILE *outfile)

Description This function prints the content of a hip vector to outfile.

By default all fused and vector array operations are disabled in the nvector hip module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first create a
vector with N VNew Hip, enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N VClone. This guarantees the new vectors
will have the same operations enabled/disabled as cloned vectors inherit the same enable/disable
options as the vector they are cloned from while vectors created with N VNew Hip will have the default
settings for the nvector hip module.

N VEnableFusedOps Hip

Prototype int N VEnableFusedOps Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the hip vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Hip

Prototype int N VEnableLinearCombination Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the hip vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableScaleAddMulti Hip

Prototype int N VEnableScaleAddMulti Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the hip vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Hip

Prototype int N VEnableDotProdMulti Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the hip vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N VEnableLinearSumVectorArray Hip

Prototype int N VEnableLinearSumVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the hip vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Hip

Prototype int N VEnableScaleVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the hip vector. The return value is 0 for success and -1 if the input vector or
its ops structure are NULL.

N VEnableConstVectorArray Hip

Prototype int N VEnableConstVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the hip vector. The return value is 0 for success and -1 if the input vector or
its ops structure are NULL.

N VEnableWrmsNormVectorArray Hip

Prototype int N VEnableWrmsNormVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the hip vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Hip

Prototype int N VEnableWrmsNormMaskVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the hip vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Hip

Prototype int N VEnableScaleAddMultiVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the hip vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Hip

Prototype int N VEnableLinearCombinationVectorArray Hip(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the hip vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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Notes

• When there is a need to access components of an N Vector Hip, v, it is recommended to use
functions N VGetDeviceArrayPointer Hip or N VGetHostArrayPointer Hip. However, when
using managed memory, the function N VGetArrayPointer may also be used.

• To maximize efficiency, vector operations in the nvector hip implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

9.10.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels
within SUNDIALS are defined by objects of the sundials::HipExecPolicy abstract class type (this
class can be accessed in the global namespace as SUNHipExecPolicy). Thus, users may provide custom
execution policies that fit the needs of their problem. The sundials::HipExecPolicy is defined in
the header file sundials hip policies.hpp, and is as follows:

class HipExecPolicy

{

public:

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;

virtual hipStream_t stream() const = 0;

virtual HipExecPolicy* clone() const = 0;

virtual ~HipExecPolicy() {}

};

To define a custom execution policy, a user simply needs to create a class that inherits from the ab-
stract class and implements the methods. The sundials provided sundials::HipThreadDirectExecPolicy

(aka in the global namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what
a custom execution policy may look like:

class HipThreadDirectExecPolicy : public HipExecPolicy

{

public:

HipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)

: blockDim_(blockDim), stream_(stream)

{}

HipThreadDirectExecPolicy(const HipThreadDirectExecPolicy& ex)

: blockDim_(ex.blockDim_), stream_(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{

return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}

virtual hipStream_t stream() const
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{

return stream_;

}

virtual HipExecPolicy* clone() const

{

return static_cast<HipExecPolicy*>(new HipThreadDirectExecPolicy(*this));

}

private:

const hipStream_t stream_;

const size_t blockDim_;

};

In total, sundials provides 3 execution policies:

1. SUNHipThreadDirectExecPolicy(const size t blockDim, const hipStream t stream = 0)

maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set
to anything. The grid size will be calculated so that there are enough threads for one thread
per element. If a HIP stream is provided, it will be used to execute the kernel.

2. SUNHipGridStrideExecPolicy(const size t blockDim, const size t gridDim, const hipStream t

stream = 0) is for kernels that use grid stride loops. The number of threads per block (block-
Dim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a HIP
stream is provided, it will be used to execute the kernel.

3. SUNHipBlockReduceExecPolicy(const size t blockDim, const size t gridDim, const hipStream t

stream = 0) is for kernels performing a reduction across individual thread blocks. The number
of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size
will be chosen so that there is enough threads for one thread per work unit. If a HIP stream is
provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created
like so:

hipStream_t stream;

hipStreamCreate(&stream);

SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple sundials data structures since they do
not hold any modifiable state information.

9.11 The NVECTOR RAJA implementation

The nvector raja module is an experimental nvector implementation using the raja hardware
abstraction layer. In this implementation, raja allows for sundials vector kernels to run on AMD,
NVIDIA, or Intel GPU devices. The module is intended for users who are already familiar with raja
and GPU programming. Building this vector module requires a C++11 compliant compiler and either
the NVIDIA CUDA programming environment, the AMD ROCm HIP programming environment, or
a compiler that supports the SYCL abstraction layer. When using the AMD ROCm HIP environment,
the HIP-clang compiler must be utilized. Users can select which backend to compile with by setting
the SUNDIALS RAJA BACKENDS CMake variable to either CUDA, HIP, or SYCL. Besides the cuda,
HIP, and SYCL backends, raja has other backends such as serial, OpenMP, and OpenACC. These
backends are not used in this sundials release.

The vector content layout is as follows:

https://software.llnl.gov/RAJA/
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struct _N_VectorContent_Raja

{

sunindextype length;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNMemoryHelper mem_helper;

void* priv; /* ’private’ data */

};

The content members are the vector length (size), a boolean flag that signals if the vector owns the
memory helper, SUNMemory objects for vector data on the host and the device, a SUNMemoryHelper

object and a private data structure which holds the memory management type, which should not be
accessed directly.

When instantiated with N VNew Raja, the underlying data will be allocated on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N VMake Raja

constructor. To use managed memory, the constructors N VNewManaged Raja and
N VMakeManaged Raja are provided. Details on each of these constructors are provided below.

The header file to include when using this module is nvector raja.h. The installed module library
to link to are libsundials nveccudaraja.lib when using the CUDA backend, libsundials nvechipraja.lib

when using the HIP backend, and libsundials nvecsyclraja.lib when using the SYCL backend.
The extension .lib is typically .so for shared libraries and .a for static libraries.

9.11.1 NVECTOR RAJA functions

Unlike other native sundials vector types, nvector raja does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N VGetHostArrayPointer Raja

Prototype realtype *N VGetHostArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Raja

Prototype realtype *N VGetDeviceArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VSetHostArrayPointer Raja

Prototype realtype *N VSetHostArrayPointer Raja(N Vector v)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N VSetDeviceArrayPointer Raja

Prototype realtype *N VSetDeviceArrayPointer Raja(N Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.



246 Description of the NVECTOR module

N VIsManagedMemory Raja

Prototype booleantype *N VIsManagedMemory Raja(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector raja module defines the implementations of all vector operations listed in Tables
9.1.1, 9.1.2, 9.1.3, and 9.1.4, except for N VDotProdMulti, N VWrmsNormVectorArray, and
N VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported in raja.
These function will be added to the nvector raja implementation in the future. Additionally the
vector operations N VGetArrayPointer and N VSetArrayPointer are not provided by the raja vector
unless managed memory is used. As such, this vector cannot be used with the sundials Fortran
interfaces, nor with the sundials direct solvers and preconditioners. The nvector raja module
provides separate functions to access data on the host and on the device. It also provides methods
for copying data from the host to the device and vice versa. Usage examples of nvector raja are
provided in some example programs for cvode [40].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix Raja (e.g. N VDestroy Raja). The module nvector raja provides the
following additional user-callable routines:

N VNew Raja

Prototype N Vector N VNew Raja(sunindextype length)

Description This function creates and allocates memory for a raja N Vector. The vector data array
is allocated on both the host and device.

N VNewWithMemHelp Raja

Prototype N Vector N VNewWithMemHelp Raja(sunindextype length, booleantype use managed mem,

SUNMemoryHelper helper);

Description This function creates an nvector raja which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N VNewManaged Raja

Prototype N Vector N VNewManaged Raja(sunindextype length)

Description This function creates and allocates memory for a raja N Vector. The vector data array
is allocated in managed memory.

N VNewEmpty Raja

Prototype N Vector N VNewEmpty Raja()

Description This function creates a new nvector wrapper with the pointer to the wrapped raja
vector set to NULL. It is used by the N VNew Raja, N VMake Raja, and N VClone Raja

implementations.

N VMake Raja

Prototype N Vector N VMake Raja(sunindextype length, realtype *h data, realtype *dev data)

Description This function creates an nvector raja with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.
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N VMakeManaged Raja

Prototype N Vector N VMakeManaged Raja(sunindextype length, realtype *vdata)

Description This function creates an nvector raja with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N VCopyToDevice Raja

Prototype realtype *N VCopyToDevice Raja(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Raja

Prototype realtype *N VCopyFromDevice Raja(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Raja

Prototype void N VPrint Raja(N Vector v)

Description This function prints the content of a raja vector to stdout.

N VPrintFile Raja

Prototype void N VPrintFile Raja(N Vector v, FILE *outfile)

Description This function prints the content of a raja vector to outfile.

By default all fused and vector array operations are disabled in the nvector raja module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Raja, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Raja will
have the default settings for the nvector raja module.

N VEnableFusedOps Raja

Prototype int N VEnableFusedOps Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Raja

Prototype int N VEnableLinearCombination Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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N VEnableScaleAddMulti Raja

Prototype int N VEnableScaleAddMulti Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Raja

Prototype int N VEnableLinearSumVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Raja

Prototype int N VEnableScaleVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Raja

Prototype int N VEnableConstVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Raja

Prototype int N VEnableScaleAddMultiVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Raja

Prototype int N VEnableLinearCombinationVectorArray Raja(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the raja vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Raja, v, it is recommended to
use functions N VGetDeviceArrayPointer Raja or N VGetHostArrayPointer Raja. However,
when using managed memory, the function N VGetArrayPointer may also be used.

• To maximize efficiency, vector operations in the nvector raja implementation that have more!

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.
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9.12 The NVECTOR SYCL implementation

The nvector sycl module is an experimental nvector implementation using the sycl abstraction
layer. At present the only supported sycl compiler is the DPC++ (Intel oneAPI) compiler. This
module allows for sundials vector kernels to run on Intel GPU devices. The module is intended for
users who are already familiar with sycl and GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl

{

sunindextype length;

booleantype own_exec;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNSyclExecPolicy* stream_exec_policy;

SUNSyclExecPolicy* reduce_exec_policy;

SUNMemoryHelper mem_helper;

sycl::queue* queue;

void* priv; /* ’private’ data */

};

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the
execution policies and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory
objects for the vector data on the host and device, pointers to execution policies that control how
streaming and reduction kernels are launched, a SUNMemoryHelper for performing memory operations,
the sycl queue, and a private data structure which holds additional members that should not be
accessed directly.

When instantiated with N VNew Sycl(), the underlying data will be allocated on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N VMake Sycl()

constructor. To use managed (shared) memory, the constructors N VNewManaged Sycl() and
N VMakeManaged Sycl() are provided. Additionally, a user-defined SUNMemoryHelper for allocat-
ing/freeing data can be provided with the constructor N VNewWithMemHelp Sycl(). Details on each
of these constructors are provided below.

The header file to include when using this is nvector sycl.h. The installed module library to
link to is libsundials nvecsycl.lib. The extension .lib is typically .so for shared libraries .a for
static libraries.

9.12.1 NVECTOR SYCL functions

The nvector sycl module implementations of all vector operations listed in the sections in Tables
9.1.1, 9.1.2, 9.1.3, and 9.1.4, except for N VDotProdMulti, N VWrmsNormVectorArray, and
N VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported. These
function will be added to the nvector sycl implementation in the future. The names of vector
operations are obtained from those in the aforementioned sections by appending the suffix Sycl (e.g.,
N VDestroy Sycl).

Additionally, the nvector sycl module provides the following user-callable constructors for cre-
ating a new nvector sycl:

N VNew Sycl

Prototype N Vector N VNew Sycl(sunindextype length, sycl::queue* Q)

Description This function creates and allocates memory for a sycl N Vector. The vector data array
is allocated on both the host and device.

https://www.khronos.org/sycl/
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N VNewManaged Sycl

Prototype N Vector N VNewManaged Sycl(sunindextype length, sycl::queue* Q)

Description This function creates and allocates memory for a sycl N Vector. The vector data array
is allocated in managed memory.

N VMake Sycl

Prototype N Vector N VMake Sycl(sunindextype length, realtype *h data,

realtype *dev data, sycl::queue* Q)

Description This function creates an nvector sycl with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.

N VMakeManaged Sycl

Prototype N Vector N VMakeManaged Sycl(sunindextype length, realtype *vdata,

sycl::queue* Q)

Description This function creates an nvector sycl with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N VNewWithMemHelp Sycl

Prototype N Vector N VNewWithMemHelp Sycl(sunindextype length,

booleantype use managed mem,

SUNMemoryHelper helper, sycl::queue* Q);

Description This function creates an nvector sycl which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N VNewEmpty Sycl

Prototype N Vector N VNewEmpty Sycl()

Description This function creates a new nvector sycl where the members of the content structure
have not been allocated. This utility function is used by the other constructors to create
a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host
and device and copying data between the two memory spaces. Note the generic nvector operations
N VGetArrayPointer() and N VSetArrayPointer() are mapped to the corresponding HostArray

functions given below. To ensure memory coherency, a user will need to call the CopyTo or CopyFrom
functions as necessary to transfer data between the host and device, unless managed (shared) memory
is used.

N VGetHostArrayPointer Sycl

Prototype realtype *N VGetHostArrayPointer Sycl(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Sycl

Prototype realtype *N VGetDeviceArrayPointer Sycl(N Vector v)

Description This function returns a pointer to the vector data on the device.
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N VSetHostArrayPointer Sycl

Prototype realtype *N VSetHostArrayPointer Sycl(N Vector v)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N VSetDeviceArrayPointer Sycl

Prototype realtype *N VSetDeviceArrayPointer Sycl(N Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N VCopyToDevice Sycl

Prototype realtype *N VCopyToDevice Sycl(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Sycl

Prototype realtype *N VCopyFromDevice Sycl(N Vector v)

Description This function copies vector data from the device to the host.

N VIsManagedMemory Sycl

Prototype booleantype *N VIsManagedMemory Sycl(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The following user-callable function is provided to set the execution policies for how sycl kernels
are launched on a device.

N VSetKernelExecPolicy Sycl

Prototype int N VSetKernelExecPolicy Sycl(N Vector v,

SUNSyclExecPolicy *stream exec policy,

SUNSyclExecPolicy *reduce exec policy)

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction kernels. By default the vector is setup to
use the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduceExecPolicy. See
Section 9.12.2 below for more information about the SUNSyclExecPolicy class.

Note: All vectors used in a single instance of a sundials package must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless
managed memory is used, a user may need to call N VCopyFromDevice Sycl() to ensure consistency
between the host and device array.

N VPrint Sycl

Prototype void N VPrint Sycl(N Vector v)

Description This function prints the host data of a sycl vector to stdout.
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N VPrintFile Sycl

Prototype void N VPrintFile Sycl(N Vector v, FILE *outfile)

Description This function prints the host data of a sycl vector to outfile.

By default all fused and vector array operations are disabled in the nvector sycl module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first create
a vector with one of the above constructors, enable/disable the desired operations on that vector
with the functions below, and then use this vector in conjunction N VClone to create any additional
vectors. This guarantees the new vectors will have the same operations enabled/disabled as cloned
vectors inherit the same enable/disable options as the vector they are cloned from while vectors created
by any of the above constructors will have the default settings for the nvector sycl module.

N VEnableFusedOps Sycl

Prototype int N VEnableFusedOps Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the sycl vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Sycl

Prototype int N VEnableLinearCombination Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the sycl vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Sycl

Prototype int N VEnableScaleAddMulti Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the sycl vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Sycl

Prototype int N VEnableLinearSumVectorArray Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the sycl vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Sycl

Prototype int N VEnableScaleVectorArray Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the sycl vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Sycl

Prototype int N VEnableConstVectorArray Sycl(N Vector v, booleantype tf)
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Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the sycl vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Sycl

Prototype int N VEnableScaleAddMultiVectorArray Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the sycl vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Sycl

Prototype int N VEnableLinearCombinationVectorArray Sycl(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the sycl vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Sycl, v, it is recommended to use
N VGetDeviceArrayPointer to access the device array or N VGetArrayPointer for the host
array. When using managed (shared) memory, either function may be used. To ensure memory
coherency, a user may need to call the CopyTo or CopyFrom functions as necessary to transfer
data between the host and device, unless managed (shared) memory is used.

• To maximize efficiency, vector operations in the nvector sycl implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

9.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the sycl kernel execution parameters used by kernels
within sundials are defined by objects of the sundials::SyclExecPolicy abstract class type (this
class can be accessed in the global namespace as SUNSyclExecPolicy). Thus, users may provide
custom execution policies that fit the needs of their problem. The sundials::SyclExecPolicy is
defined in the header file sundials sycl policies.hpp, as follows:

class SyclExecPolicy

{

public:

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;

virtual SyclExecPolicy* clone() const = 0;

virtual ~SyclExecPolicy() {}

};

For consistency the function names and behavior mirror the execution policies for the CUDA and
HIP vectors. In the sycl case the blockSize is the local work-group range in a one-dimensional
nd range (threads per group). The gridSize is the number of local work groups so the global work-
group range in a one-dimensional nd range is blockSize * gridSize (total number of threads).
All vector kernels are written with a many-to-one mapping where work units (vector elements) are
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mapped in a round-robin manner across the global range. As such, the blockSize and gridSize can
be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the
abstract class and implements the methods. The sundials provided
sundials::SyclThreadDirectExecPolicy (aka in the global namespace as
SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class SyclThreadDirectExecPolicy : public SyclExecPolicy

{

public:

SyclThreadDirectExecPolicy(const size_t blockDim)

: blockDim_(blockDim)

{}

SyclThreadDirectExecPolicy(const SyclThreadDirectExecPolicy& ex)

: blockDim_(ex.blockDim_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{

return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}

virtual SyclExecPolicy* clone() const

{

return static_cast<SyclExecPolicy*>(new SyclThreadDirectExecPolicy(*this));

}

private:

const size_t blockDim_;

};

sundials provides the following execution policies:

1. SUNSyclThreadDirectExecPolicy(const size t blockDim) is for kernels performing stream-
ing operations and maps each work unit (vector element) to a work-item (thread). Based on the
local work-group range (number of threads per group, blockSize) the number of local work-
groups (gridSize) is computed so there are enough work-items in the global work-group range
( total number of threads, blockSize * gridSize) for one work unit per work-item (thread).

2. SUNSyclGridStrideExecPolicy(const size t blockDim, const size t gridDim) is for ker-
nels performing streaming operations and maps each work unit (vector element) to a work-item
(thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value.
In this case the global work-group range (total number of threads, blockSize * gridSize) may
be less than the number of work units (vector elements).

3. SUNSyclBlockReduceExecPolicy(const size t blockDim) is for kernels performing a reduc-
tion, the local work-group range (number of threads per group, blockSize) and the number of
local work-groups (gridSize) can be set to any positive value or the gridSize may be set to 0
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in which case the global range is chosen so that there are enough threads for at most two work
units per work-item.

By default the nvector sycl module uses the SUNSyclThreadDirectExecPolicy and
SUNSyclBlockReduceExecPolicy where the default blockDim is determined by querying the device for
the max work group size. User may specify different policies by constructing a new SyclExecPolicy

and attaching it with N VSetKernelExecPolicy Sycl(). For example, a policy that uses 128 work-
items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length);

SUNSyclThreadDirectExecPolicy thread_direct(128);

SUNSyclBlockReduceExecPolicy block_reduce(128);

flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple sundials data structures (e.g. a SUNMatrix

and an N Vector) since they do not hold any modifiable state information.

9.13 The NVECTOR OPENMPDEV implementation

In situations where a user has access to a device such as a GPU for offloading computation, sundials
provides an nvector implementation using OpenMP device offloading, called nvector openmpdev.

The nvector openmpdev implementation defines the content field of the N Vector to be a
structure containing the length of the vector, a pointer to the beginning of a contiguous data array
on the host, a pointer to the beginning of a contiguous data array on the device, and a boolean flag
own data which specifies the ownership of host and device data arrays.

struct _N_VectorContent_OpenMPDEV {

sunindextype length;

booleantype own_data;

realtype *host_data;

realtype *dev_data;

};

The header file to include when using this module is nvector openmpdev.h. The installed module
library to link to is libsundials nvecopenmpdev.lib where .lib is typically .so for shared libraries
and .a for static libraries.

9.13.1 NVECTOR OPENMPDEV accessor macros

The following macros are provided to access the content of an nvector openmpdev vector.

• NV CONTENT OMPDEV

This routine gives access to the contents of the nvector openmpdev vector N Vector.

The assignment v cont = NV CONTENT OMPDEV(v) sets v cont to be a pointer to the nvec-
tor openmpdev N Vector content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ( (N_VectorContent_OpenMPDEV)(v->content) )

• NV OWN DATA OMPDEV, NV DATA HOST OMPDEV, NV DATA DEV OMPDEV, NV LENGTH OMPDEV

These macros give individual access to the parts of the content of an nvector openmpdev
N Vector.

The assignment v data = NV DATA HOST OMPDEV(v) sets v data to be a pointer to the first
component of the data on the host for the N Vector v. The assignment NV DATA HOST OMPDEV(v)

= v data sets the host component array of v to be v data by storing the pointer v data.
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The assignment v dev data = NV DATA DEV OMPDEV(v) sets v dev data to be a pointer to the
first component of the data on the device for the N Vector v. The assignment NV DATA DEV OMPDEV(v)

= v dev data sets the device component array of v to be v dev data by storing the pointer
v dev data.

The assignment v len = NV LENGTH OMPDEV(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMPDEV(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->own_data )

#define NV_DATA_HOST_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->host_data )

#define NV_DATA_DEV_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->dev_data )

#define NV_LENGTH_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->length )

9.13.2 NVECTOR OPENMPDEV functions

The nvector openmpdev module defines OpenMP device offloading implementations of all vec-
tor operations listed in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4, except for N VGetArrayPointer and
N VSetArrayPointer. As such, this vector cannot be used with the sundials Fortran interfaces, nor
with the sundials direct solvers and preconditioners. It also provides methods for copying from the
host to the device and vice versa.

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by
appending the suffix OpenMPDEV (e.g. N VDestroy OpenMPDEV). The module nvector openmpdev
provides the following additional user-callable routines:

N VNew OpenMPDEV

Prototype N Vector N VNew OpenMPDEV(sunindextype vec length)

Description This function creates and allocates memory for an nvector openmpdev N Vector.

N VNewEmpty OpenMPDEV

Prototype N Vector N VNewEmpty OpenMPDEV(sunindextype vec length)

Description This function creates a new nvector openmpdev N Vector with an empty (NULL) host
and device data arrays.

N VMake OpenMPDEV

Prototype N Vector N VMake OpenMPDEV(sunindextype vec length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector openmpdev vector with user-supplied vector data
arrays h vdata and d vdata. This function does not allocate memory for data itself.

N VCloneVectorArray OpenMPDEV

Prototype N Vector *N VCloneVectorArray OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors.

N VCloneVectorArrayEmpty OpenMPDEV

Prototype N Vector *N VCloneVectorArrayEmpty OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors,
each with an empty (NULL) data array.



9.13 The NVECTOR OPENMPDEV implementation 257

N VDestroyVectorArray OpenMPDEV

Prototype void N VDestroyVectorArray OpenMPDEV(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMPDEV or with
N VCloneVectorArrayEmpty OpenMPDEV.

N VGetHostArrayPointer OpenMPDEV

Prototype realtype *N VGetHostArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the host data array.

N VGetDeviceArrayPointer OpenMPDEV

Prototype realtype *N VGetDeviceArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the device data array.

N VPrint OpenMPDEV

Prototype void N VPrint OpenMPDEV(N Vector v)

Description This function prints the content of an nvector openmpdev vector to stdout.

N VPrintFile OpenMPDEV

Prototype void N VPrintFile OpenMPDEV(N Vector v, FILE *outfile)

Description This function prints the content of an nvector openmpdev vector to outfile.

N VCopyToDevice OpenMPDEV

Prototype void N VCopyToDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s host data array
to the device data array.

N VCopyFromDevice OpenMPDEV

Prototype void N VCopyFromDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s device data array
to the host data array.

By default all fused and vector array operations are disabled in the nvector openmpdev module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMPDEV, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMPDEV

will have the default settings for the nvector openmpdev module.

N VEnableFusedOps OpenMPDEV

Prototype int N VEnableFusedOps OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the nvector openmpdev vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.
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N VEnableLinearCombination OpenMPDEV

Prototype int N VEnableLinearCombination OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMulti OpenMPDEV

Prototype int N VEnableScaleAddMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the nvector openmpdev vector. The return value
is 0 for success and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti OpenMPDEV

Prototype int N VEnableDotProdMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray OpenMPDEV

Prototype int N VEnableLinearSumVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableScaleVectorArray OpenMPDEV

Prototype int N VEnableScaleVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableConstVectorArray OpenMPDEV

Prototype int N VEnableConstVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableWrmsNormMaskVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormMaskVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the nvector openmpdev vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray OpenMPDEV

Prototype int N VEnableScaleAddMultiVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the nvector openmpdev vector. The return
value is 0 for success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray OpenMPDEV

Prototype int N VEnableLinearCombinationVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is most efficient to first obtain the
component array via h data = NV DATA HOST OMPDEV(v) for the host array or
d data = NV DATA DEV OMPDEV(v) for the device array and then access h data[i] or d data[i]

within the loop.

• When accessing individual components of an N Vector v on the host remember to first copy the
array back from the device with N VCopyFromDevice OpenMPDEV(v) to ensure the array is up
to date.

• N VNewEmpty OpenMPDEV, N VMake OpenMPDEV, and N VCloneVectorArrayEmpty OpenMPDEV set !

the field own data = SUNFALSE. N VDestroy OpenMPDEV and N VDestroyVectorArray OpenMPDEV

will not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In
such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmpdev implementation that !

have more than one N Vector argument do not check for consistent internal representation of
these vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

9.14 The NVECTOR TRILINOS implementation

The nvector trilinos module is an nvector wrapper around the Trilinos Tpetra vector. The
interface to Tpetra is implemented in the Sundials::TpetraVectorInterface class. This class
simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

https://github.com/trilinos/Trilinos
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to interface the C++ class with the nvector C code. A pointer to an instance of this class is kept in
the content field of the N Vector object, to ensure that the Tpetra vector is not deleted for as long
as the N Vector object exists.

The Tpetra vector type in the Sundials::TpetraVectorInterface class is defined as:

typedef Tpetra::Vector<realtype, int, sunindextype> vector_type;

The Tpetra vector will use the sundials-specified realtype as its scalar type, int as its local ordinal
type, and sunindextype as the global ordinal type. This type definition will use Tpetra’s default
node type. Available Kokkos node types in Trilinos 12.14 release are serial (single thread), OpenMP,
Pthread, and cuda. The default node type is selected when building the Kokkos package. For
example, the Tpetra vector will use a cuda node if Tpetra was built with cuda support and the
cuda node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector trilinos.h. The installed module
library to link to is libsundials nvectrilinos.lib where .lib is typically .so for shared libraries
and .a for static libraries.

9.14.1 NVECTOR TRILINOS functions

The nvector trilinos module defines implementations of all vector operations listed in Tables
9.1.1, 9.1.4, and 9.1.4, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this
vector cannot be used with sundials Fortran interfaces, nor with the sundials direct solvers and
preconditioners. When access to raw vector data is needed, it is recommended to extract the Trilinos
Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
nvector trilinos are provided in example programs for ida [38].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.4, and 9.1.4 by append-
ing the suffix Trilinos (e.g. N VDestroy Trilinos). Vector operations call existing Tpetra::Vector

methods when available. Vector operations specific to sundials are implemented as standalone func-
tions in the namespace Sundials::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp.
The module nvector trilinos provides the following additional user-callable functions:

• N VGetVector Trilinos

This C++ function takes an N Vector as the argument and returns a reference counting pointer
to the underlying Tpetra vector. This is a standalone function defined in the global namespace.

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v);

• N VMake Trilinos

This C++ function creates and allocates memory for an nvector trilinos wrapper around a
user-provided Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v);

Notes

• The template parameter vector type should be set as:
typedef Sundials::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in sundials.

• When there is a need to access components of an N Vector Trilinos, v, it is recommeded
to extract the Trilinos vector object via x vec = N VGetVector Trilinos(v) and then access
components using the appropriate Trilinos functions.

• The functions N VDestroy Trilinos and N VDestroyVectorArray Trilinos only delete the
N Vector wrapper. The underlying Tpetra vector object will exist for as long as there is at least
one reference to it.
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9.15 The NVECTOR MANYVECTOR implementation

The nvector manyvector implementation of the nvector module provided with sundials is
designed to facilitate problems with an inherent data partitioning for the solution vector within a
computational node. These data partitions are entirely user-defined, through construction of dis-
tinct nvector modules for each component, that are then combined together to form the nvec-
tor manyvector. We envision two generic use cases for this implementation:

A. Heterogeneous computational architectures: for users who wish to partition data on a node be-
tween different computing resources, they may create architecture-specific subvectors for each
partition. For example, a user could create one serial component based on nvector serial,
another component for GPU accelerators based on nvector cuda, and another threaded com-
ponent based on nvector openmp.

B. Structure of arrays (SOA) data layouts: for users who wish to create separate subvectors for
each solution component, e.g., in a Navier-Stokes simulation they could have separate sub-
vectors for density, velocities and pressure, which are combined together into a single nvec-
tor manyvector for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the nvector manyvector imple-
mentation should support arbitrary combinations of these cases.

The nvector manyvector implementation is designed to work with any nvector subvectors
that implement the minimum required set of operations. Additionally, nvector manyvector sets
no limit on the number of subvectors that may be attached (aside from the limitations of using
sunindextype for indexing, and standard per-node memory limitations). However, while this os-
tensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we
anticipate that this extreme situation will hinder performance due to non-stride-one memory accesses
and increased function call overhead. We therefore recommend a relatively coarse partitioning of the
problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time
integration modules that will leverage the problem partitioning enabled by nvector manyvector.
However, even at present we anticipate that users will be able to leverage such data partitioning in
their problem-defining ODE right-hand side, DAE residual, or nonlinear solver residual functions.

9.15.1 NVECTOR MANYVECTOR structure

The nvector manyvector implementation defines the content field of N Vector to be a structure
containing the number of subvectors comprising the ManyVector, the global length of the ManyVector
(including all subvectors), a pointer to the beginning of the array of subvectors, and a boolean flag
own data indicating ownership of the subvectors that populate subvec array.

struct _N_VectorContent_ManyVector {

sunindextype num_subvectors; /* number of vectors attached */

sunindextype global_length; /* overall manyvector length */

N_Vector* subvec_array; /* pointer to N_Vector array */

booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector manyvector.h. The installed module
library to link against is libsundials nvecmanyvector.lib where .lib is typically .so for shared
libraries and .a for static libraries.

9.15.2 NVECTOR MANYVECTOR functions

The nvector manyvector module implements all vector operations listed in Tables 9.1.1, 9.1.2,
9.1.3, and 9.1.4, except for N VGetArrayPointer, N VSetArrayPointer, N VScaleAddMultiVectorArray,
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and N VLinearCombinationVectorArray. As such, this vector cannot be used with the sundials
Fortran-77 interfaces, nor with the sundials direct solvers and preconditioners. Instead, the
nvector manyvector module provides functions to access subvectors, whose data may in turn be
accessed according to their nvector implementations.

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by ap-
pending the suffix ManyVector (e.g. N VDestroy ManyVector). The module nvector manyvector
provides the following additional user-callable routines:

N VNew ManyVector

Prototype N Vector N VNew ManyVector(sunindextype num subvectors,

N Vector *vec array);

Description This function creates a ManyVector from a set of existing nvector objects.

This routine will copy all N Vector pointers from the input vec array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying nvector objects themselves should
not be destroyed before the ManyVector that contains them.

Upon successful completion, the new ManyVector is returned; otherwise this routine
returns NULL (e.g., a memory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic
N Vector utility functions N VNewVectorArray, and N VSetVecAtIndexVectorArray to
create the N Vector* argument. This is further explained in Chapter 7.1.3.5, and the
functions are documented in Chapter 9.1.6.

F2003 Name This function is callable as FN VNew ManyVector when using the Fortran 2003 interface
module.

N VGetSubvector ManyVector

Prototype N Vector N VGetSubvector ManyVector(N Vector v, sunindextype vec num);

Description This function returns the vec num subvector from the nvector array.

F2003 Name This function is callable as FN VGetSubvector ManyVector when using the Fortran 2003
interface module.

N VGetSubvectorArrayPointer ManyVector

Prototype realtype *N VGetSubvectorArrayPointer ManyVector(N Vector v, sunindextype vec num);

Description This function returns the data array pointer for the vec num subvector from the nvec-
tor array.

If the input vec num is invalid, or if the subvector does not support the N VGetArrayPointer

operation, then NULL is returned.

F2003 Name This function is callable as FN VGetSubvectorArrayPointer ManyVector when using
the Fortran 2003 interface module.

N VSetSubvectorArrayPointer ManyVector

Prototype int N VSetSubvectorArrayPointer ManyVector(realtype *v data, N Vector v, sunindextype

vec num);

Description This function sets the data array pointer for the vec num subvector from the nvector
array.

If the input vec num is invalid, or if the subvector does not support the N VSetArrayPointer

operation, then this routine returns -1; otherwise it returns 0.
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F2003 Name This function is callable as FN VSetSubvectorArrayPointer ManyVector when using
the Fortran 2003 interface module.

N VGetNumSubvectors ManyVector

Prototype sunindextype N VGetNumSubvectors ManyVector(N Vector v);

Description This function returns the overall number of subvectors in the ManyVector object.

F2003 Name This function is callable as FN VGetNumSubvectors ManyVector when using the Fortran
2003 interface module.

By default all fused and vector array operations are disabled in the nvector manyvector module,
except for N VWrmsNormVectorArray and N VWrmsNormMaskVectorArray, that are enabled by default.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N VNew ManyVector, enable/disable the desired operations for that vector
with the functions below, and create any additional vectors from that vector using N VClone. This
guarantees that the new vectors will have the same operations enabled/disabled, since cloned vectors
inherit those configuration options from the vector they are cloned from, while vectors created with
N VNew ManyVector will have the default settings for the nvector manyvector module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as
desired before attaching them to the ManyVector in N VNew ManyVector.

N VEnableFusedOps ManyVector

Prototype int N VEnableFusedOps ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps ManyVector when using the Fortran
2003 interface module.

N VEnableLinearCombination ManyVector

Prototype int N VEnableLinearCombination ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination ManyVector when using the
Fortran 2003 interface module.

N VEnableScaleAddMulti ManyVector

Prototype int N VEnableScaleAddMulti ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the ManyVector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti ManyVector when using the For-
tran 2003 interface module.
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N VEnableDotProdMulti ManyVector

Prototype int N VEnableDotProdMulti ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti ManyVector when using the For-
tran 2003 interface module.

N VEnableLinearSumVectorArray ManyVector

Prototype int N VEnableLinearSumVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray ManyVector when using
the Fortran 2003 interface module.

N VEnableScaleVectorArray ManyVector

Prototype int N VEnableScaleVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray ManyVector when using the
Fortran 2003 interface module.

N VEnableConstVectorArray ManyVector

Prototype int N VEnableConstVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray ManyVector when using the
Fortran 2003 interface module.

N VEnableWrmsNormVectorArray ManyVector

Prototype int N VEnableWrmsNormVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray ManyVector when using
the Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray ManyVector

Prototype int N VEnableWrmsNormMaskVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the ManyVector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray ManyVector when
using the Fortran 2003 interface module.

Notes

• N VNew ManyVector sets the field own data = SUNFALSE. N VDestroy ManyVector will not at- !

tempt to call N VDestroy on any subvectors contained in the subvector array for any N Vector

with own data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the
subvectors.

• To maximize efficiency, arithmetic vector operations in the nvector manyvector implemen- !

tation that have more than one N Vector argument do not check for consistent internal repre-
sentation of these vectors. It is the user’s responsibility to ensure that such routines are called
with N Vector arguments that were all created with the same subvector representations.

9.16 The NVECTOR MPIMANYVECTOR implementation

The nvector mpimanyvector implementation of the nvector module provided with sundials
is designed to facilitate problems with an inherent data partitioning for the solution vector, and
when using distributed-memory parallel architectures. As such, the MPIManyVector implementation
supports all use cases allowed by the MPI-unaware ManyVector implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through
construction of distinct nvector modules for each component, that are then combined together to
form the nvector mpimanyvector. We envision three generic use cases for this implementation:

A. Heterogeneous computational architectures (single-node or multi-node): for users who wish to
partition data on a node between different computing resources, they may create architecture-
specific subvectors for each partition. For example, a user could create one MPI-parallel compo-
nent based on nvector parallel, another single-node component for GPU accelerators based
on nvector cuda, and another threaded single-node component based on nvector openmp.

B. Process-based multiphysics decompositions (multi-node): for users who wish to combine separate
simulations together, e.g., where one subvector resides on one subset of MPI processes, while
another subvector resides on a different subset of MPI processes, and where the user has created
a MPI intercommunicator to connect these distinct process sets together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for users who wish to create
separate subvectors for each solution component, e.g., in a Navier-Stokes simulation they could
have separate subvectors for density, velocities and pressure, which are combined together into
a single nvector mpimanyvector for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the nvector mpimanyvector
implementation should support arbitrary combinations of these cases.

The nvector mpimanyvector implementation is designed to work with any nvector subvec-
tors that implement the minimum required set of operations, however significant performance benefits
may be obtained when subvectors additionally implement the optional local reduction operations listed
in Table 9.1.4.

Additionally, nvector mpimanyvector sets no limit on the number of subvectors that may
be attached (aside from the limitations of using sunindextype for indexing, and standard per-node
memory limitations). However, while this ostensibly supports subvectors with one entry each (i.e., one
subvector for each solution entry), we anticipate that this extreme situation will hinder performance
due to non-stride-one memory accesses and increased function call overhead. We therefore recommend
a relatively coarse partitioning of the problem, although actual performance will likely be problem-
dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time inte-
gration modules that will leverage the problem partitioning enabled by nvector mpimanyvector.
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However, even at present we anticipate that users will be able to leverage such data partitioning in
their problem-defining ODE right-hand side, DAE residual, or nonlinear solver residual functions.

9.16.1 NVECTOR MPIMANYVECTOR structure

The nvector mpimanyvector implementation defines the content field of N Vector to be a struc-
ture containing the MPI communicator (or MPI COMM NULL if running on a single-node), the number
of subvectors comprising the MPIManyVector, the global length of the MPIManyVector (including
all subvectors on all MPI tasks), a pointer to the beginning of the array of subvectors, and a boolean
flag own data indicating ownership of the subvectors that populate subvec array.

struct _N_VectorContent_MPIManyVector {

MPI_Comm comm; /* overall MPI communicator */

sunindextype num_subvectors; /* number of vectors attached */

sunindextype global_length; /* overall mpimanyvector length */

N_Vector* subvec_array; /* pointer to N_Vector array */

booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector mpimanyvector.h. The installed
module library to link against is libsundials nvecmpimanyvector.lib where .lib is typically .so

for shared libraries and .a for static libraries.
Note: If sundials is configured with MPI disabled, then the MPIManyVector library will not!

be built. Furthermore, any user codes that include nvector mpimanyvector.h must be compiled
using an MPI-aware compiler (whether the specific user code utilizes MPI or not). We note that the
nvector manyvector implementation is designed for ManyVector use cases in an MPI-unaware
environment.

9.16.2 NVECTOR MPIMANYVECTOR functions

The nvector mpimanyvector module implements all vector operations listed in Tables 9.1.1, 9.1.2,
9.1.3, and 9.1.4, except for N VGetArrayPointer, N VSetArrayPointer, N VScaleAddMultiVectorArray,
and N VLinearCombinationVectorArray. As such, this vector cannot be used with the sundials
Fortran-77 interfaces, nor with the sundials direct solvers and preconditioners. Instead, the
nvector mpimanyvector module provides functions to access subvectors, whose data may in turn
be accessed according to their nvector implementations.

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix MPIManyVector (e.g. N VDestroy MPIManyVector). The module nvec-
tor mpimanyvector provides the following additional user-callable routines:

N VNew MPIManyVector

Prototype N Vector N VNew MPIManyVector(sunindextype num subvectors,

N Vector *vec array);

Description This function creates an MPIManyVector from a set of existing nvector objects, under
the requirement that all MPI-aware subvectors use the same MPI communicator (this is
checked internally). If none of the subvectors are MPI-aware, then this may equivalently
be used to describe data partitioning within a single node. We note that this routine is
designed to support use cases A and C above.

This routine will copy all N Vector pointers from the input vec array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying nvector objects themselves should
not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine
returns NULL (e.g., if two MPI-aware subvectors use different MPI communicators).
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Users of the Fortran 2003 interface to this function will first need to use the generic
N Vector utility functions N VNewVectorArray, and N VSetVecAtIndexVectorArray to
create the N Vector* argument. This is further explained in Chapter 7.1.3.5, and the
functions are documented in Chapter 9.1.6.

F2003 Name This function is callable as FN VNew MPIManyVector when using the Fortran 2003 inter-
face module.

N VMake MPIManyVector

Prototype N Vector N VMake MPIManyVector(MPI Comm comm, sunindextype num subvectors,

N Vector *vec array);

Description This function creates an MPIManyVector from a set of existing nvector objects, and
a user-created MPI communicator that “connects” these subvectors. Any MPI-aware
subvectors may use different MPI communicators than the input comm. We note that
this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will inter-
nally call MPI Comm dup to create a copy of the input comm, so the user-supplied comm

argument need not be retained after the call to N VMake MPIManyVector.

If all subvectors are MPI-unaware, then the input comm argument should be MPI COMM NULL,
although in this case, it would be simpler to call N VNew MPIManyVector instead, or to
just use the nvector manyvector module.

This routine will copy all N Vector pointers from the input vec array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying nvector objects themselves should
not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine
returns NULL (e.g., if the input vec array is NULL).

F2003 Name This function is callable as FN VMake MPIManyVector when using the Fortran 2003 in-
terface module.

N VGetSubvector MPIManyVector

Prototype N Vector N VGetSubvector MPIManyVector(N Vector v, sunindextype vec num);

Description This function returns the vec num subvector from the nvector array.

F2003 Name This function is callable as FN VGetSubvector MPIManyVector when using the Fortran
2003 interface module.

N VGetSubvectorArrayPointer MPIManyVector

Prototype realtype *N VGetSubvectorArrayPointer MPIManyVector(N Vector v, sunindextype

vec num);

Description This function returns the data array pointer for the vec num subvector from the nvec-
tor array.

If the input vec num is invalid, or if the subvector does not support the N VGetArrayPointer

operation, then NULL is returned.

F2003 Name This function is callable as FN VGetSubvectorArrayPointer MPIManyVector when us-
ing the Fortran 2003 interface module.
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N VSetSubvectorArrayPointer MPIManyVector

Prototype int N VSetSubvectorArrayPointer MPIManyVector(realtype *v data, N Vector v,

sunindextype vec num);

Description This function sets the data array pointer for the vec num subvector from the nvector
array.

If the input vec num is invalid, or if the subvector does not support the N VSetArrayPointer

operation, then this routine returns -1; otherwise it returns 0.

F2003 Name This function is callable as FN VSetSubvectorArrayPointer MPIManyVector when us-
ing the Fortran 2003 interface module.

N VGetNumSubvectors MPIManyVector

Prototype sunindextype N VGetNumSubvectors MPIManyVector(N Vector v);

Description This function returns the overall number of subvectors in the MPIManyVector object.

F2003 Name This function is callable as FN VGetNumSubvectors MPIManyVector when using the For-
tran 2003 interface module.

By default all fused and vector array operations are disabled in the nvector mpimanyvector
module, except for N VWrmsNormVectorArray and N VWrmsNormMaskVectorArray, that are enabled
by default. The following additional user-callable routines are provided to enable or disable fused and
vector array operations for a specific vector. To ensure consistency across vectors it is recommended
to first create a vector with N VNew MPIManyVector or N VMake MPIManyVector, enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from
that vector using N VClone. This guarantees that the new vectors will have the same operations
enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N VNew MPIManyVector and N VMake MPIManyVector will
have the default settings for the nvector mpimanyvector module. We note that these routines do
not call the corresponding routines on subvectors, so those should be set up as desired before attaching
them to the MPIManyVector in N VNew MPIManyVector or N VMake MPIManyVector.

N VEnableFusedOps MPIManyVector

Prototype int N VEnableFusedOps MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps MPIManyVector when using the For-
tran 2003 interface module.

N VEnableLinearCombination MPIManyVector

Prototype int N VEnableLinearCombination MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination MPIManyVector when using
the Fortran 2003 interface module.

N VEnableScaleAddMulti MPIManyVector

Prototype int N VEnableScaleAddMulti MPIManyVector(N Vector v, booleantype tf);
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Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the MPIManyVector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti MPIManyVector when using the
Fortran 2003 interface module.

N VEnableDotProdMulti MPIManyVector

Prototype int N VEnableDotProdMulti MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti MPIManyVector when using the
Fortran 2003 interface module.

N VEnableLinearSumVectorArray MPIManyVector

Prototype int N VEnableLinearSumVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the MPIManyVector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray MPIManyVector when
using the Fortran 2003 interface module.

N VEnableScaleVectorArray MPIManyVector

Prototype int N VEnableScaleVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray MPIManyVector when using
the Fortran 2003 interface module.

N VEnableConstVectorArray MPIManyVector

Prototype int N VEnableConstVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray MPIManyVector when using
the Fortran 2003 interface module.

N VEnableWrmsNormVectorArray MPIManyVector

Prototype int N VEnableWrmsNormVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the MPIManyVector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray MPIManyVector when us-
ing the Fortran 2003 interface module.
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N VEnableWrmsNormMaskVectorArray MPIManyVector

Prototype int N VEnableWrmsNormMaskVectorArray MPIManyVector(N Vector v, booleantype

tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the MPIManyVector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray MPIManyVector when
using the Fortran 2003 interface module.

Notes

• N VNew MPIManyVector and N VMake MPIManyVector set the field own data = SUNFALSE.!

N VDestroy MPIManyVector will not attempt to call N VDestroy on any subvectors contained
in the subvector array for any N Vector with own data set to SUNFALSE. In such a case, it is the
user’s responsibility to deallocate the subvectors.

• To maximize efficiency, arithmetic vector operations in the nvector mpimanyvector imple-!

mentation that have more than one N Vector argument do not check for consistent internal
representation of these vectors. It is the user’s responsibility to ensure that such routines are
called with N Vector arguments that were all created with the same subvector representations.

9.17 The NVECTOR MPIPLUSX implementation

The nvector mpiplusx implementation of the nvector module provided with sundials is designed
to facilitate the MPI+X paradigm, where X is some form of on-node (local) parallelism (e.g. OpenMP,
CUDA). This paradigm is becoming increasingly popular with the rise of heterogeneous computing
architectures.

The nvector mpiplusx implementation is designed to work with any nvector that imple-
ments the minimum required set of operations. However, it is not recommended to use the nvec-
tor parallel, nvector parhyp, nvector petsc, or nvector trilinos implementations under-
neath the nvector mpiplusx module since they already provide MPI capabilities.

9.17.1 NVECTOR MPIPLUSX structure

The nvector mpiplusx implementation is a thin wrapper around the nvector mpimanyvector.
Accordingly, it adopts the same content structure as defined in Section 9.16.1.

The header file to include when using this module is nvector mpiplusx.h. The installed module
library to link against is libsundials nvecmpiplusx.lib where .lib is typically .so for shared
libraries and .a for static libraries.

Note: If sundials is configured with MPI disabled, then the mpiplusx library will not be built.!

Furthermore, any user codes that include nvector mpiplusx.h must be compiled using an MPI-aware
compiler.

9.17.2 NVECTOR MPIPLUSX functions

The nvector mpiplusx module adopts all vector operations listed in Tables 9.1.1, 9.1.2, 9.1.3, and
9.1.4, from the nvector mpimanyvector (see section 9.16.2) except for N VGetArrayPointer and
N VSetArrayPointer; the module provides its own implementation of these functions that call the
local vector implementations. Therefore, the nvector mpiplusx module implements all of the opera-
tions listed in the referenced sections except for N VScaleAddMultiVectorArray, and N VLinearCombinationVectorArray.
Accordingly, it’s compatibility with the sundials Fortran-77 interface, and with the sundials direct
solvers and preconditioners depends on the local vector implementation.

The module nvector mpiplusx provides the following additional user-callable routines:



9.17 The NVECTOR MPIPLUSX implementation 271

N VMake MPIPlusX

Prototype N Vector N VMake MPIPlusX(MPI Comm comm,

N Vector *local vector);

Description This function creates an MPIPlusX vector from an existing local (i.e. on-node) nvector
object, and a user-created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will inter-
nally call MPI Comm dup to create a copy of the input comm, so the user-supplied comm

argument need not be retained after the call to N VMake MPIPlusX.

This routine will copy the N Vector pointer to the input local vector, so the underlying
local nvector object should not be destroyed before the mpiplusx that contains it.

Upon successful completion, the new MPIPlusX is returned; otherwise this routine re-
turns NULL (e.g., if the input local vector is NULL).

F2003 Name This function is callable as FN VMake MPIPlusX when using the Fortran 2003 interface
module.

N VGetLocalVector MPIPlusX

Prototype N Vector N VGetLocalVector MPIPlusX(N Vector v);

Description This function returns the local vector underneath the the MPIPlusX nvector.

F2003 Name This function is callable as FN VGetLocalVector MPIPlusX when using the Fortran 2003
interface module.

N VGetArrayPointer MPIPlusX

Prototype realtype* N VGetLocalVector MPIPlusX(N Vector v);

Description This function returns the data array pointer for the local vector if the local vector
implements the N VGetArrayPointer operation; otherwise it returns NULL.

F2003 Name This function is callable as FN VGetArrayPointer MPIPlusX when using the Fortran
2003 interface module.

N VSetArrayPointer MPIPlusX

Prototype void N VSetArrayPointer MPIPlusX(realtype *data, N Vector v);

Description This function sets the data array pointer for the local vector if the local vector imple-
ments the N VSetArrayPointer operation.

F2003 Name This function is callable as FN VSetArrayPointer MPIPlusX when using the Fortran
2003 interface module.

The nvector mpiplusx module does not implement any fused or vector array operations. Instead
users should enable/disable fused operations on the local vector.

Notes

• N VMake MPIPlusX sets the field own data = SUNFALSE. !

and N VDestroy MPIPlusX will not call N VDestroy on the local vector. In this case, it is the
user’s responsibility to deallocate the local vector.

• To maximize efficiency, arithmetic vector operations in the nvector mpiplusx implementation !

that have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsibility to ensure that such routines are called with
N Vector arguments that were all created with the same local vector representations.
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9.18 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with sundials.
Each implementation makes use of the functions in test nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.

• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

• Test N VGetLength: Compares self-reported length to calculated length.

• Test N VGetCommunicator: Compares self-reported communicator to the one used in construc-
tor; or for MPI-unaware vectors it ensures that NULL is reported.

• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y
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• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x

• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.

• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate the max norm.

• Test N VWrmsNorm: Create vector of known values, find and validate the weighted root mean
square.

• Test N VWrmsNormMask: Create vector of known values, find and validate the weighted root
mean square using all elements except one.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.

• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

• Test N VLinearCombination Case 1a: Test x = a x

• Test N VLinearCombination Case 1b: Test z = a x

• Test N VLinearCombination Case 2a: Test x = a x + b y

• Test N VLinearCombination Case 2b: Test z = a x + b y

• Test N VLinearCombination Case 3a: Test x = x + a y + b z

• Test N VLinearCombination Case 3b: Test x = a x + b y + c z

• Test N VLinearCombination Case 3c: Test w = a x + b y + c z

• Test N VScaleAddMulti Case 1a: y = a x + y

• Test N VScaleAddMulti Case 1b: z = a x + y

• Test N VScaleAddMulti Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test N VScaleAddMulti Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test N VDotProdMulti Case 1: Calculate the dot product of two vectors

• Test N VDotProdMulti Case 2: Calculate the dot product of one vector with three other vectors
in a vector array.

• Test N VLinearSumVectorArray Case 1: z = a x + b y
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• Test N VLinearSumVectorArray Case 2a: Z[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2b: X[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2c: Y[i] = a X[i] + b Y[i]

• Test N VScaleVectorArray Case 1a: y = c y

• Test N VScaleVectorArray Case 1b: z = c y

• Test N VScaleVectorArray Case 2a: Y[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 2b: Z[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 1a: z = c

• Test N VScaleVectorArray Case 1b: Z[i] = c

• Test N VWrmsNormVectorArray Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm.

• Test N VWrmsNormVectorArray Case 1b: Create a vector array of three vectors of know values,
find and validate the weighted root mean square norm of each.

• Test N VWrmsNormMaskVectorArray Case 1a: Create a vector of know values, find and validate
the weighted root mean square norm using all elements except one.

• Test N VWrmsNormMaskVectorArray Case 1b: Create a vector array of three vectors of know
values, find and validate the weighted root mean square norm of each using all elements except
one.

• Test N VScaleAddMultiVectorArray Case 1a: y = a x + y

• Test N VScaleAddMultiVectorArray Case 1b: z = a x + y

• Test N VScaleAddMultiVectorArray Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test N VScaleAddMultiVectorArray Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test N VLinearCombinationVectorArray Case 1a: x = a x

• Test N VLinearCombinationVectorArray Case 1b: z = a x

• Test N VLinearCombinationVectorArray Case 2a: x = a x + b y

• Test N VLinearCombinationVectorArray Case 2b: z = a x + b y

• Test N VLinearCombinationVectorArray Case 3a: x = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 3b: w = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 4a: X[0][i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 4b: Z[i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]
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• Test N VLinearCombinationVectorArray Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test N VLinearCombinationVectorArray Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test N VLinearCombinationVectorArray Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

• Test N VLinearCombinationVectorArray Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test N VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

• Test N VMaxNormLocal: Create vector with known values, find and validate the MPI task-local
portion of the max norm.

• Test N VMinLocal: Create vector, find and validate the MPI task-local min.

• Test N VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1
norm.

• Test N VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local
portion of the weighted squared sum of two vectors.

• Test N VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-
local portion of the weighted squared sum of two vectors, using all elements except one.

• Test N VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]

• Test N VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector
c.

• Test N VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the
MPI task-local minimum quotient.



276 Description of the NVECTOR module

Table 9.2: List of vector functions usage by idas code modules

id
a
s

id
a
l
s

id
a
b
b
d
p
r
e

id
a
a

N VGetVectorID

N VGetLength 4
N VClone X X X X

N VCloneEmpty 1
N VDestroy X X X X

N VCloneVectorArray X X
N VDestroyVectorArray X X

N VSpace X 2
N VGetArrayPointer 1 X
N VSetArrayPointer 1

N VLinearSum X X X
N VConst X X X
N VProd X
N VDiv X

N VScale X X X X
N VAbs X
N VInv X

N VAddConst X
N VMaxNorm X
N VWrmsNorm X X

N VMin X
N VMinQuotient X
N VConstrMask X

N VWrmsNormMask X
N VCompare X

N VLinearCombination X
N VScaleAddMulti X
N VDotProdMulti 3

N VLinearSumVectorArray X
N VScaleVectorArray X
N VConstVectorArray X

N VWrmsNormVectorArray X
N VWrmsNormMaskVectorArray X
N VScaleAddMultiVectorArray X

N VLinearCombinationVectorArray X



Chapter 10

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the sundials solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular sunmatrix implementation. Users can provide their own specific imple-
mentation of the sunmatrix module, particularly in cases where they provide their own nvector
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three sunmatrix implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with sundials
follow.

10.1 The SUNMatrix API

The sunmatrix API can be grouped into two sets of functions: the core matrix operations, and utility
functions. Section 10.1.1 lists the core operations, while Section 10.1.2 lists the utility functions.

10.1.1 SUNMatrix core functions

The generic SUNMatrix object defines the following set of core operations:

SUNMatGetID

Call id = SUNMatGetID(A);

Description Returns the type identifier for the matrix A. It is used to determine the matrix imple-
mentation type (e.g. dense, banded, sparse,. . . ) from the abstract SUNMatrix interface.
This is used to assess compatibility with sundials-provided linear solver implementa-
tions.

Arguments A (SUNMatrix) a sunmatrix object

Return value A SUNMATRIX ID, possible values are given in the Table 10.2.

F2003 Name FSUNMatGetID

SUNMatClone

Call B = SUNMatClone(A);

Description Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops
field. It does not copy the matrix, but rather allocates storage for the new matrix.

Arguments A (SUNMatrix) a sunmatrix object
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Return value SUNMatrix

F2003 Name FSUNMatClone

F2003 Call type(SUNMatrix), pointer :: B

B => FSUNMatClone(A)

SUNMatDestroy

Call SUNMatDestroy(A);

Description Destroys A and frees memory allocated for its internal data.

Arguments A (SUNMatrix) a sunmatrix object

Return value None

F2003 Name FSUNMatDestroy

SUNMatSpace

Call ier = SUNMatSpace(A, &lrw, &liw);

Description Returns the storage requirements for the matrix A. lrw is a long int containing the
number of realtype words and liw is a long int containing the number of integer words.

Arguments A (SUNMatrix) a sunmatrix object

lrw (sunindextype*) the number of realtype words

liw (sunindextype*) the number of integer words

Return value None

Notes This function is advisory only, for use in determining a user’s total space requirements;
it could be a dummy function in a user-supplied sunmatrix module if that information
is not of interest.

F2003 Name FSUNMatSpace

F2003 Call integer(c long) :: lrw(1), liw(1)

ier = FSUNMatSpace(A, lrw, liw)

SUNMatZero

Call ier = SUNMatZero(A);

Description Performs the operation Aij = 0 for all entries of the matrix A.

Arguments A (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatZero

SUNMatCopy

Call ier = SUNMatCopy(A,B);

Description Performs the operation Bij = Ai,j for all entries of the matrices A and B.

Arguments A (SUNMatrix) a sunmatrix object

B (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatCopy
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SUNMatScaleAdd

Call ier = SUNMatScaleAdd(c, A, B);

Description Performs the operation A = cA+B.

Arguments c (realtype) constant that scales A

A (SUNMatrix) a sunmatrix object

B (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatScaleAdd

SUNMatScaleAddI

Call ier = SUNMatScaleAddI(c, A);

Description Performs the operation A = cA+ I.

Arguments c (realtype) constant that scales A

A (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatScaleAddI

SUNMatMatvecSetup

Call ier = SUNMatMatvecSetup(A);

Description Performs any setup necessary to perform a matrix-vector product. It is useful for
SUNMatrix implementations which need to prepare the matrix itself, or communication
structures before performing the matrix-vector product.

Arguments A (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatMatvecSetup

SUNMatMatvec

Call ier = SUNMatMatvec(A, x, y);

Description Performs the matrix-vector product operation, y = Ax. It should only be called with
vectors x and y that are compatible with the matrix A – both in storage type and
dimensions.

Arguments A (SUNMatrix) a sunmatrix object

x (N Vector) a nvector object

y (N Vector) an output nvector object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatMatvec

10.1.2 SUNMatrix utility functions

To aid in the creation of custom sunmatrix modules the generic sunmatrix module provides two
utility functions SUNMatNewEmpty and SUNMatVCopyOps.
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SUNMatNewEmpty

Call A = SUNMatNewEmpty();

Description The function SUNMatNewEmpty allocates a new generic sunmatrix object and initializes
its content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns a SUNMatrix object. If an error occurs when allocating the object,
then this routine will return NULL.

F2003 Name FSUNMatNewEmpty

SUNMatFreeEmpty

Call SUNMatFreeEmpty(A);

Description This routine frees the generic SUNMatrix object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been
freed. It will additionally test whether the ops pointer is NULL, and, if it is not, it will
free it as well.

Arguments A (SUNMatrix) a SUNMatrix object

Return value None

F2003 Name FSUNMatFreeEmpty

SUNMatCopyOps

Call retval = SUNMatCopyOps(A, B);

Description The function SUNMatCopyOps copies the function pointers in the ops structure of A into
the ops structure of B.

Arguments A (SUNMatrix) the matrix to copy operations from

B (SUNMatrix) the matrix to copy operations to

Return value This returns 0 if successful and a non-zero value if either of the inputs are NULL or the
ops structure of either input is NULL.

F2003 Name FSUNMatCopyOps

10.1.3 SUNMatrix return codes

The functions provided to sunmatrix modules within the sundials-provided sunmatrix implemen-
tations utilize a common set of return codes, shown in Table 10.1. These adhere to a common pattern:
0 indicates success, and a negative value indicates a failure. The actual values of each return code are
primarily to provide additional information to the user in case of a failure.

Table 10.1: Description of the SUNMatrix return codes

Name Value Description

SUNMAT SUCCESS 0 successful call or converged solve

continued on next page
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Table 10.2: Identifiers associated with matrix kernels supplied with sundials.

Matrix ID Matrix type ID Value
SUNMATRIX DENSE Dense M× N matrix 0
SUNMATRIX BAND Band M× M matrix 1
SUNMATRIX MAGMADENSE Magma dense M× N matrix 2
SUNMATRIX SPARSE Sparse (CSR or CSC) M× N matrix 3
SUNMATRIX SLUNRLOC Adapter for the SuperLU DIST SuperMatrix 4
SUNMATRIX CUSPARSE CUDA sparse CSR matrix 5
SUNMATRIX CUSTOM User-provided custom matrix 6

Name Value Description

SUNMAT ILL INPUT -701 an illegal input has been provided to the function

SUNMAT MEM FAIL -702 failed memory access or allocation

SUNMAT OPERATION FAIL -703 a SUNMatrix operation returned nonzero
SUNMAT MATVEC SETUP REQUIRED -704 the SUNMatMatvecSetup routine needs to be called be-

fore calling SUNMatMatvec

10.1.4 SUNMatrix identifiers

Each sunmatrix implementation included in sundials has a unique identifier specified in enumer-
ation and shown in Table 10.2. It is recommended that a user-supplied sunmatrix implementation
use the SUNMATRIX CUSTOM identifier.

10.1.5 Compatibility of SUNMatrix modules

We note that not all sunmatrix types are compatible with all nvector types provided with sundi-
als. This is primarily due to the need for compatibility within the SUNMatMatvec routine; however,
compatibility between sunmatrix and nvector implementations is more crucial when considering
their interaction within sunlinsol objects, as will be described in more detail in Chapter 11. More
specifically, in Table 10.3 we show the matrix interfaces available as sunmatrix modules, and the
compatible vector implementations.

Table 10.3: sundials matrix interfaces and vector implementations that can be used for each.

Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Dense X X X X

Band X X X X

Sparse X X X X

SLUNRloc X X X X X X X

User supplied X X X X X X X X X

10.1.6 The generic SUNMatrix module implementation

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N Vector

type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as
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typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {

void *content;

struct _generic_SUNMatrix_Ops *ops;

};

The generic SUNMatrix Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {

SUNMatrix_ID (*getid)(SUNMatrix);

SUNMatrix (*clone)(SUNMatrix);

void (*destroy)(SUNMatrix);

int (*zero)(SUNMatrix);

int (*copy)(SUNMatrix, SUNMatrix);

int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);

int (*scaleaddi)(realtype, SUNMatrix);

int (*matvecsetup)(SUNMatrix)

int (*matvec)(SUNMatrix, N_Vector, N_Vector);

int (*space)(SUNMatrix, long int*, long int*);

};

The generic sunmatrix module defines and implements the matrix operations acting on SUNMatrix

objects. These routines are nothing but wrappers for the matrix operations defined by a particular
sunmatrix implementation, which are accessed through the ops field of the SUNMatrix structure. To
illustrate this point we show below the implementation of a typical matrix operation from the generic
sunmatrix module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)

{

return((int) A->ops->zero(A));

}

Section 10.1.1 contains a complete list of all matrix operations defined by the generic sunmatrix
module.

The Fortran 2003 interface provides a bind(C) derived-type for the generic SUNMatrix and the
generic SUNMatrix Ops structures. Their definition is given below.

type, bind(C), public :: SUNMatrix

type(C_PTR), public :: content

type(C_PTR), public :: ops

end type SUNMatrix

type, bind(C), public :: SUNMatrix_Ops

type(C_FUNPTR), public :: getid

type(C_FUNPTR), public :: clone

type(C_FUNPTR), public :: destroy

type(C_FUNPTR), public :: zero

type(C_FUNPTR), public :: copy

type(C_FUNPTR), public :: scaleadd

type(C_FUNPTR), public :: scaleaddi

type(C_FUNPTR), public :: matvecsetup

type(C_FUNPTR), public :: matvec

type(C_FUNPTR), public :: space

end type SUNMatrix_Ops
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10.1.7 Implementing a custom SUNMatrix

A particular implementation of the sunmatrix module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for
each sundials solver to determine which sunmatrix operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunmatrix module (each with different SUNMatrix internal data
representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

It is recommended that a user-supplied sunmatrix implementation use the SUNMATRIX CUSTOM

identifier.
To aid in the creation of custom sunmatrix modules the generic sunmatrix module provides two

utility functions SUNMatNewEmpty and SUNMatVCopyOps. When used in custom sunmatrix construc-
tors and clone routines these functions will ease the introduction of any new optional matrix operations
to the sunmatrix API by ensuring only required operations need to be set and all operations are
copied when cloning a matrix. These functions are desrcribed in Section 10.1.2.

10.2 SUNMatrix functions used by IDAS

In Table 10.4, we list the matrix functions in the sunmatrix module used within the idas package.
The table also shows, for each function, which of the code modules uses the function. The main idas
integrator does not call any sunmatrix functions directly, so the table columns are specific to the
idals interface and the idabbdpre preconditioner module. We further note that the idals interface
only utilizes these routines when supplied with a matrix-based linear solver, i.e., the sunmatrix object
passed to IDASetLinearSolver was not NULL.

At this point, we should emphasize that the idas user does not need to know anything about the
usage of matrix functions by the idas code modules in order to use idas. The information is presented
as an implementation detail for the interested reader.

Table 10.4: List of matrix functions usage by idas code modules

id
a
l
s

id
a
b
b
d
p
r
e

SUNMatGetID X
SUNMatDestroy X

SUNMatZero X X
SUNMatSpace †

The matrix functions listed in Section 10.1.1 with a † symbol are optionally used, in that these are
only called if they are implemented in the sunmatrix module that is being used (i.e. their function
pointers are non-NULL). The matrix functions listed in Section 10.1.1 that are not used by idas
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are: SUNMatCopy, SUNMatClone, SUNMatScaleAdd, SUNMatScaleAddI and SUNMatMatvec. Therefore
a user-supplied sunmatrix module for idas could omit these functions.

10.3 The SUNMatrix Dense implementation

The dense implementation of the sunmatrix module provided with sundials, sunmatrix dense,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {

sunindextype M;

sunindextype N;

realtype *data;

sunindextype ldata;

realtype **cols;

};

These entries of the content field contain the following information:
M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M·N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤ j < N)
may be accessed via cols[j][i].

The header file to include when using this module is sunmatrix/sunmatrix dense.h. The sunma-
trix dense module is accessible from all sundials solvers without linking to the
libsundials sunmatrixdense module library.

10.3.1 SUNMatrix Dense accessor macros

The following macros are provided to access the content of a sunmatrix dense matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix D

denotes that these are specific to the dense version.

• SM CONTENT D

This macro gives access to the contents of the dense SUNMatrix.

The assignment A cont = SM CONTENT D(A) sets A cont to be a pointer to the dense SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense)(A->content) )

• SM ROWS D, SM COLUMNS D, and SM LDATA D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS D(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS D(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )
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#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

• SM DATA D and SM COLS D

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA D(A) sets A data to be a pointer to the first component of
the data array for the dense SUNMatrix A. The assignment SM DATA D(A) = A data sets the data
array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS D(A) sets A cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM COLS D(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

• SM COLUMN D and SM ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col j = SM COLUMN D(A,j) sets col j to be a pointer to the first entry of
the j-th column of the M × N dense matrix A (with 0 ≤ j < N). The type of the expression
SM COLUMN D(A,j) is realtype *. The pointer returned by the call SM COLUMN D(A,j) can be
treated as an array which is indexed from 0 to M− 1.

The assignments SM ELEMENT D(A,i,j) = a ij and a ij = SM ELEMENT D(A,i,j) reference the
(i,j)-th element of the M× N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols)[j] )

#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j][i] )

10.3.2 SUNMatrix Dense functions

The sunmatrix dense module defines dense implementations of all matrix operations listed in Sec-
tion 10.1.1. Their names are obtained from those in Section 10.1.1 by appending the suffix Dense

(e.g. SUNMatCopy Dense). All the standard matrix operations listed in Section 10.1.1 with the
suffix Dense appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FSUNMatCopy Dense).

The module sunmatrix dense provides the following additional user-callable routines:

SUNDenseMatrix

Prototype SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N)

Description This constructor function creates and allocates memory for a dense SUNMatrix. Its
arguments are the number of rows, M, and columns, N, for the dense matrix.

F2003 Name This function is callable as FSUNDenseMatrix when using the Fortran 2003 interface
module.

SUNDenseMatrix Print

Prototype void SUNDenseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a dense SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.
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SUNDenseMatrix Rows

Prototype sunindextype SUNDenseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Rows when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Columns

Prototype sunindextype SUNDenseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Columns when using the Fortran 2003
interface module.

SUNDenseMatrix LData

Prototype sunindextype SUNDenseMatrix LData(SUNMatrix A)

Description This function returns the length of the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix LData when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Data

Prototype realtype* SUNDenseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Data when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Cols

Prototype realtype** SUNDenseMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the dense SUNMatrix.

SUNDenseMatrix Column

Prototype realtype* SUNDenseMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the first entry of the jth column of the dense SUNMatrix.
The resulting pointer should be indexed over the range 0 to M− 1.

F2003 Name This function is callable as FSUNDenseMatrix Column when using the Fortran 2003 in-
terface module.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA D(A) or
A data = SUNDenseMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS D(A) or
A cols = SUNDenseMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNDenseMatrix Column(A,j) and then to access the entries within that column
using A colj[i] within the loop.
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All three of these are more efficient than using SM ELEMENT D(A,i,j) within a double loop.

• Within the SUNMatMatvec Dense routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

10.3.3 SUNMatrix Dense Fortran interfaces

The sunmatrix dense module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix dense mod Fortran module defines interfaces to most sunmatrix dense C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNDenseMatrix is
interfaced as FSUNDenseMatrix.

The Fortran 2003 sunmatrix dense interface module can be accessed with the use statement,
i.e. use fsunmatrix dense mod, and linking to the library libsundials fsunmatrixdense mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixdense mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix dense module also includes the
Fortran-callable function FSUNDenseMatInit(code, M, N, ier) to initialize this sunmatrix dense
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); M and N are the corresponding dense matrix construction arguments
(declared to match C type long int); and ier is an error return flag equal to 0 for success and -1
for failure. Both code and ier are declared to match C type int. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNDenseMassMatInit(M, N, ier)

initializes this sunmatrix dense module for storing the mass matrix.

10.4 The SUNMatrix Band implementation

The banded implementation of the sunmatrix module provided with sundials, sunmatrix band,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {

sunindextype M;

sunindextype N;

sunindextype mu;

sunindextype ml;

sunindextype s_mu;

sunindextype ldim;

realtype *data;

sunindextype ldata;

realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 10.1. A more
complete description of the parts of this content field is given below:
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M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < N

ml - lower half-bandwidth, 0 ≤ ml < N

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routines in the associated
sunlinsol band and sunlinsol lapackband modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s mu field holds the upper half-bandwidth allocated
for A.

ldim - leading dimension (ldim ≥ s mu+ml+1)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are
stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to ldata contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= ldim·N)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the
j-th column. This pointer may be treated as an array indexed from s mu−mu (to access the
uppermost element within the band in the j-th column) to s mu+ml (to access the lowest
element within the band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra
storage elements required by the LU decomposition function. Finally, cols[j][i-j+s mu] is
the (i, j)-th element with j−mu ≤ i ≤ j+ml.

The header file to include when using this module is sunmatrix/sunmatrix band.h. The sunma-
trix band module is accessible from all sundials solvers without linking to the
libsundials sunmatrixband module library.

10.4.1 SUNMatrix Band accessor macros

The following macros are provided to access the content of a sunmatrix band matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix B

denotes that these are specific to the banded version.

• SM CONTENT B

This routine gives access to the contents of the banded SUNMatrix.

The assignment A cont = SM CONTENT B(A) sets A cont to be a pointer to the banded SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band)(A->content) )

• SM ROWS B, SM COLUMNS B, SM UBAND B, SM LBAND B, SM SUBAND B, SM LDIM B, and SM LDATA B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS B(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS B(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )
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size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

A

Figure 10.1: Diagram of the storage for the sunmatrix band module. Here A is an N × N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated sunlinsol band linear solver.
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#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->s_mu )

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->ldim )

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

• SM DATA B and SM COLS B

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA B(A) sets A data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM DATA B(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS B(A) sets A cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM COLS B(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

• SM COLUMN B, SM COLUMN ELEMENT B, and SM ELEMENT B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM ELEMENT B(A,i,j) = a ij and a ij = SM ELEMENT B(A,i,j) reference the
(i,j)-th element of the N× N band matrix A, where 0 ≤ i, j ≤ N− 1. The location (i,j) should
further satisfy j−mu ≤ i ≤ j+ml.

The assignment col j = SM COLUMN B(A,j) sets col j to be a pointer to the diagonal element
of the j-th column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression
SM COLUMN B(A,j) is realtype *. The pointer returned by the call SM COLUMN B(A,j) can be
treated as an array which is indexed from −mu to ml.

The assignments SM COLUMN ELEMENT B(col j,i,j) = a ij and
a ij = SM COLUMN ELEMENT B(col j,i,j) reference the (i,j)-th entry of the band matrix A

when used in conjunction with SM COLUMN B to reference the j-th column through col j. The
index (i,j) should satisfy j−mu ≤ i ≤ j+ml.

Implementation:

#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

#define SM_ELEMENT_B(A,i,j)

( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)] )

10.4.2 SUNMatrix Band functions

The sunmatrix band module defines banded implementations of all matrix operations listed in Sec-
tion 10.1.1. Their names are obtained from those in Section 10.1.1 by appending the suffix Band (e.g.
SUNMatCopy Band). All the standard matrix operations listed in Section 10.1.1 with the suffix Band

appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Band).

The module sunmatrix band provides the following additional user-callable routines:

SUNBandMatrix

Prototype SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml)
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Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, and the upper and lower half-bandwidths of the matrix,
mu and ml. The stored upper bandwidth is set to mu+ml to accommodate subsequent
factorization in the sunlinsol band and sunlinsol lapackband modules.

F2003 Name This function is callable as FSUNBandMatrix when using the Fortran 2003 interface
module.

SUNBandMatrixStorage

Prototype SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu,

sunindextype ml, sunindextype smu)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, the upper and lower half-bandwidths of the matrix,
mu and ml, and the stored upper bandwidth, smu. When creating a band SUNMatrix,
this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the sunlinsol band module;

• exactly equal to mu+ml if the matrix will be used by the sunlinsol lapackband
module;

• at least mu if used in some other manner.

Note: it is strongly recommended that users call the default constructor, SUNBandMatrix,
in all standard use cases. This advanced constructor is used internally within sundials
solvers, and is provided to users who require banded matrices for non-default purposes.

SUNBandMatrix Print

Prototype void SUNBandMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a banded SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNBandMatrix Rows

Prototype sunindextype SUNBandMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Rows when using the Fortran 2003 interface
module.

SUNBandMatrix Columns

Prototype sunindextype SUNBandMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Columns when using the Fortran 2003 in-
terface module.

SUNBandMatrix LowerBandwidth

Prototype sunindextype SUNBandMatrix LowerBandwidth(SUNMatrix A)

Description This function returns the lower half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LowerBandwidth when using the Fortran
2003 interface module.
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SUNBandMatrix UpperBandwidth

Prototype sunindextype SUNBandMatrix UpperBandwidth(SUNMatrix A)

Description This function returns the upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix UpperBandwidth when using the Fortran
2003 interface module.

SUNBandMatrix StoredUpperBandwidth

Prototype sunindextype SUNBandMatrix StoredUpperBandwidth(SUNMatrix A)

Description This function returns the stored upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix StoredUpperBandwidth when using the
Fortran 2003 interface module.

SUNBandMatrix LDim

Prototype sunindextype SUNBandMatrix LDim(SUNMatrix A)

Description This function returns the length of the leading dimension of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LDim when using the Fortran 2003 interface
module.

SUNBandMatrix Data

Prototype realtype* SUNBandMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Data when using the Fortran 2003 interface
module.

SUNBandMatrix Cols

Prototype realtype** SUNBandMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the banded SUNMatrix.

SUNBandMatrix Column

Prototype realtype* SUNBandMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the diagonal entry of the j-th column of the banded
SUNMatrix. The resulting pointer should be indexed over the range −mu to ml.

F2003 Name This function is callable as FSUNBandMatrix Column when using the Fortran 2003 inter-
face module.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA B(A) or
A data = SUNBandMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS B(A) or
A cols = SUNBandMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNBandMatrix Column(A,j) and then to access the entries within that column
using SM COLUMN ELEMENT B(A colj,i,j).
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All three of these are more efficient than using SM ELEMENT B(A,i,j) within a double loop.

• Within the SUNMatMatvec Band routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

10.4.3 SUNMatrix Band Fortran interfaces

The sunmatrix band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix band mod Fortran module defines interfaces to most sunmatrix band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNBandMatrix is
interfaced as FSUNBandMatrix.

The Fortran 2003 sunmatrix band interface module can be accessed with the use statement,
i.e. use fsunmatrix band mod, and linking to the library libsundials fsunmatrixband mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix band module also includes
the Fortran-callable function FSUNBandMatInit(code, N, mu, ml, ier) to initialize this sunma-
trix band module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); N, mu, and ml are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNBandMassMatInit(N,

mu, ml, ier) initializes this sunmatrix band module for storing the mass matrix.

10.5 The SUNMatrix Sparse implementation

The sparse implementation of the sunmatrix module provided with sundials, sunmatrix sparse,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:

struct _SUNMatrixContent_Sparse {

sunindextype M;

sunindextype N;

sunindextype NNZ;

sunindextype NP;

realtype *data;

int sparsetype;

sunindextype *indexvals;

sunindextype *indexptrs;

/* CSC indices */

sunindextype **rowvals;
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sunindextype **colptrs;

/* CSR indices */

sunindextype **colvals;

sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 10.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:
M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and
indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC
matrices NP = N, and for CSR matrices NP = M. This value is set automatically based
the input for sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the
values of the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC MAT or CSR MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays,
e.g. if indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix
is located in data[7], and is located in row indexvals[7] of the matrix. The last entry
contains the total number of nonzero values in the matrix and hence points one past the
end of the active data in the data and indexvals arrays. For CSR matrices, each entry
provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SlsMat type for user convenience, to provide a more intuitive
interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse sunmatrix, based on the sparse matrix storage type.
rowvals - pointer to indexvals when sparsetype is CSC MAT, otherwise set to NULL.

colptrs - pointer to indexptrs when sparsetype is CSC MAT, otherwise set to NULL.

colvals - pointer to indexvals when sparsetype is CSR MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR MAT, otherwise set to NULL.
For example, the 5× 4 CSC matrix 

0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored in this structure as either

M = 5;

N = 4;

NNZ = 8;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};

or
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M = 5;

N = 4;

NNZ = 10;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the
total number of nonzero entries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;

N = 4;

NNZ = 8;

NP = M;

data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};

sparsetype = CSR_MAT;

indexvals = {1, 2, 0, 3, 1, 0, 3, 3};

indexptrs = {0, 2, 4, 5, 7, 8};

The header file to include when using this module is sunmatrix/sunmatrix sparse.h. The sunma-
trix sparse module is accessible from all sundials solvers without linking to the
libsundials sunmatrixsparse module library.

10.5.1 SUNMatrix Sparse accessor macros

The following macros are provided to access the content of a sunmatrix sparse matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix S

denotes that these are specific to the sparse version.

• SM CONTENT S

This routine gives access to the contents of the sparse SUNMatrix.

The assignment A cont = SM CONTENT S(A) sets A cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse)(A->content) )

• SM ROWS S, SM COLUMNS S, SM NNZ S, SM NP S, and SM SPARSETYPE S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS S(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS S(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )
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nz
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j column 0
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rowvals colptrs

indexvals indexptrs

colvals rowptrs

NULL NULL

A(*rowvals[j],1)

A(*rowvals[1],0)

A(*rowvals[0],0)

A(*rowvals[k],NP−1)

A(*rowvals[nz−1],NP−1)

column NP−1

NNZ

M
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Figure 10.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M×N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M− 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row i, column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.
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• SM DATA S, SM INDEXVALS S, and SM INDEXPTRS S

These macros give access to the data and index arrays for the matrix entries.

The assignment A data = SM DATA S(A) sets A data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM DATA S(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A indexvals = SM INDEXVALS S(A) sets A indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
matrix) for the sparse SUNMatrix A. The assignment A indexptrs = SM INDEXPTRS S(A) sets
A indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )

10.5.2 SUNMatrix Sparse functions

The sunmatrix sparse module defines sparse implementations of all matrix operations listed in
Section 10.1.1. Their names are obtained from those in Section 10.1.1 by appending the suffix Sparse

(e.g. SUNMatCopy Sparse). All the standard matrix operations listed in Section 10.1.1 with the
suffix Sparse appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FSUNMatCopy Sparse).

The module sunmatrix sparse provides the following additional user-callable routines:

SUNSparseMatrix

Prototype SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,

sunindextype NNZ, int sparsetype)

Description This function creates and allocates memory for a sparse SUNMatrix. Its arguments
are the number of rows and columns of the matrix, M and N, the maximum number of
nonzeros to be stored in the matrix, NNZ, and a flag sparsetype indicating whether to
use CSR or CSC format (valid arguments are CSR MAT or CSC MAT).

F2003 Name This function is callable as FSUNSparseMatrix when using the Fortran 2003 interface
module.

SUNSparseFromDenseMatrix

Prototype SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing dense matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX DENSE;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromDenseMatrix when using the Fortran 2003
interface module.
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SUNSparseFromBandMatrix

Prototype SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing band matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX BAND;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromBandMatrix when using the Fortran 2003
interface module.

SUNSparseMatrix Realloc

Prototype int SUNSparseMatrix Realloc(SUNMatrix A)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has no wasted space (i.e. the space allocated for nonzero entries equals
the actual number of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure
(e.g. if the input matrix is not sparse).

F2003 Name This function is callable as FSUNSparseMatrix Realloc when using the Fortran 2003
interface module.

SUNSparseMatrix Reallocate

Prototype int SUNSparseMatrix Reallocate(SUNMatrix A, sunindextype NNZ)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has storage for a specified number of nonzeros. Returns 0 on success and
1 on failure (e.g. if the input matrix is not sparse or if NNZ is negative).

F2003 Name This function is callable as FSUNSparseMatrix Reallocate when using the Fortran 2003
interface module.

SUNSparseMatrix Print

Prototype void SUNSparseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a sparse SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNSparseMatrix Rows

Prototype sunindextype SUNSparseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Rows when using the Fortran 2003 inter-
face module.
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SUNSparseMatrix Columns

Prototype sunindextype SUNSparseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Columns when using the Fortran 2003
interface module.

SUNSparseMatrix NNZ

Prototype sunindextype SUNSparseMatrix NNZ(SUNMatrix A)

Description This function returns the number of entries allocated for nonzero storage for the sparse
matrix SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix NNZ when using the Fortran 2003 inter-
face module.

SUNSparseMatrix NP

Prototype sunindextype SUNSparseMatrix NP(SUNMatrix A)

Description This function returns the number of columns/rows for the sparse SUNMatrix, depending
on whether the matrix uses CSC/CSR format, respectively. The indexptrs array has
NP+1 entries.

F2003 Name This function is callable as FSUNSparseMatrix NP when using the Fortran 2003 interface
module.

SUNSparseMatrix SparseType

Prototype int SUNSparseMatrix SparseType(SUNMatrix A)

Description This function returns the storage type (CSR MAT or CSC MAT) for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix SparseType when using the Fortran 2003
interface module.

SUNSparseMatrix Data

Prototype realtype* SUNSparseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Data when using the Fortran 2003 inter-
face module.

SUNSparseMatrix IndexValues

Prototype sunindextype* SUNSparseMatrix IndexValues(SUNMatrix A)

Description This function returns a pointer to index value array for the sparse SUNMatrix: for CSR
format this is the column index for each nonzero entry, for CSC format this is the row
index for each nonzero entry.

F2003 Name This function is callable as FSUNSparseMatrix IndexValues when using the Fortran
2003 interface module.
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SUNSparseMatrix IndexPointers

Prototype sunindextype* SUNSparseMatrix IndexPointers(SUNMatrix A)

Description This function returns a pointer to the index pointer array for the sparse SUNMatrix:
for CSR format this is the location of the first entry of each row in the data and
indexvalues arrays, for CSC format this is the location of the first entry of each column.

F2003 Name This function is callable as FSUNSparseMatrix IndexPointers when using the Fortran
2003 interface module.

Within the SUNMatMatvec Sparse routine, internal consistency checks are performed to ensure that!

the matrix is called with consistent nvector implementations. These are currently limited to: nvec-
tor serial, nvector openmp, nvector pthreads, and nvector cuda when using managed
memory. As additional compatible vector implementations are added to sundials, these will be
included within this compatibility check.

10.5.3 SUNMatrix Sparse Fortran interfaces

The sunmatrix sparse module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix sparse mod Fortran module defines interfaces to most sunmatrix sparse C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNSparseMatrix is
interfaced as FSUNSparseMatrix.

The Fortran 2003 sunmatrix sparse interface module can be accessed with the use statement,
i.e. use fsunmatrix sparse mod, and linking to the library libsundials fsunmatrixsparse mod.lib
in addition to the C library. For details on where the library and module file fsunmatrix sparse mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixsparse mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix sparse module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this sunmatrix sparse module for a given sundials solver. Here code is an integer input for the
solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this sunmatrix sparse mod-
ule for storing the mass matrix.

10.6 The SUNMatrix SLUNRloc implementation

The sunmatrix slunrloc implementation of the sunmatrix module provided with sundials is an
adapter for the SuperMatrix structure provided by the SuperLU DIST sparse matrix factorization
and solver library written by X. Sherry Li [8, 31, 46, 47]. It is designed to be used with the sunlin-
sol superludist linear solver discussed in Section 11.10. To this end, it defines the content field of
SUNMatrix to be the following structure:
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struct _SUNMatrixContent_SLUNRloc {

booleantype own_data;

gridinfo_t *grid;

sunindextype *row_to_proc;

pdgsmv_comm_t *gsmv_comm;

SuperMatrix *A_super;

SuperMatrix *ACS_super;

};

A more complete description of the this content field is given below:

own data - a flag which indicates if the SUNMatrix is responsible for freeing A super

grid - pointer to the SuperLU DIST structure that stores the 2D process grid

row to proc - a mapping between the rows in the matrix and the process it resides on; will be NULL

until the SUNMatMatvecSetup routine is called

gsmv comm - pointer to the SuperLU DIST structure that stores the communication information
needed for matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is
called

A super - pointer to the underlying SuperLU DIST SuperMatrix with Stype = SLU NR loc, Dtype

= SLU D, Mtype = SLU GE; must have the full diagonal present to be used with SUNMatScaleAddI

routine

ACS super - a column-sorted version of the matrix needed to perform matrix-vector multiplication;
will be NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix slunrloc.h. The installed
module library to link to is libsundials sunmatrixslunrloc.lib where .lib is typically .so for
shared libraries and .a for static libraries.

10.6.1 SUNMatrix SLUNRloc functions

The module sunmatrix slunrloc provides the following user-callable routines:

SUNMatrix SLUNRloc

Call A = SUNMatrix SLUNRloc(Asuper, grid);

Description The function SUNMatrix SLUNRloc creates and allocates memory for a sunmatrix slunrloc
object.

Arguments Asuper (SuperMatrix*) a fully-allocated SuperLU DIST SuperMatrix that the SUN-
Matrix will wrap; must have Stype = SLU NR loc, Dtype = SLU D, Mtype = SLU GE

to be compatible

grid (gridinfo t*) the initialized SuperLU DIST 2D process grid structure

Return value a SUNMatrix object if Asuper is compatible else NULL

Notes

SUNMatrix SLUNRloc Print

Call SUNMatrix SLUNRloc Print(A, fp);

Description The function SUNMatrix SLUNRloc Print prints the underlying SuperMatrix content.

Arguments A (SUNMatrix) the matrix to print

fp (FILE) the file pointer used for printing

Return value void

Notes
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SUNMatrix SLUNRloc SuperMatrix

Call Asuper = SUNMatrix SLUNRloc SuperMatrix(A);

Description The function SUNMatrix SLUNRloc SuperMatrix provides access to the underlying Su-
perLU DIST SuperMatrix of A.

Arguments A (SUNMatrix) the matrix to access

Return value SuperMatrix*

Notes

SUNMatrix SLUNRloc ProcessGrid

Call grid = SUNMatrix SLUNRloc ProcessGrid(A);

Description The function SUNMatrix SLUNRloc ProcessGrid provides access to the SuperLU DIST
gridinfo t structure associated with A.

Arguments A (SUNMatrix) the matrix to access

Return value gridinfo t*

Notes

SUNMatrix SLUNRloc OwnData

Call does own data = SUNMatrix SLUNRloc OwnData(A);

Description The function SUNMatrix SLUNRloc OwnData returns true if the SUNMatrix object is
responsible for freeing A super, otherwise it returns false.

Arguments A (SUNMatrix) the matrix to access

Return value booleantype

Notes

The sunmatrix slunrloc module defines implementations of all generic SUNMatrix operations
listed in Section 10.1.1:

• SUNMatGetID SLUNRloc - returns SUNMATRIX SLUNRLOC

• SUNMatClone SLUNRloc

• SUNMatDestroy SLUNRloc

• SUNMatSpace SLUNRloc - this only returns information for the storage within the matrix inter-
face, i.e. storage for row to proc

• SUNMatZero SLUNRloc

• SUNMatCopy SLUNRloc

• SUNMatScaleAdd SLUNRloc - performs A = cA+ B, but A and B must have the same sparsity
pattern

• SUNMatScaleAddI SLUNRloc - performs A = cA+ I, but the diagonal of A must be present

• SUNMatMatvecSetup SLUNRloc - initializes the SuperLU DIST parallel communication struc-
tures needed to perform a matrix-vector product; only needs to be called before the first call to
SUNMatMatvec or if the matrix changed since the last setup

• SUNMatMatvec SLUNRloc

The sunmatrix slunrloc module requires that the complete diagonal, i.e. nonzeros and zeros,!

is present in order to use the SUNMatScaleAddI operation.
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10.7 The SUNMatrix cuSparse implementation

The SUNMATRIX CUSPARSE implementation of the SUNMatrix module provided with sundials, is an
interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs [7]. All data stored by this
matrix implementation resides on the GPU at all times. The implementation currently supports
the cuSPARSE CSR matrix format described in the cuSPARSE documentation as well as a unique
low-storage format for block-diagonal matrices of the form

A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1


where all the block matrices Aj share the same sparsity pattern. We will refer to this format as BCSR
(not to be confused with the canonical BSR format where each block is stored as dense). In this format,
the CSR column indices and row pointers are only stored for the first block and are computed only
as necessary for other blocks. This can drastically reduce the amount of storage required compared
to the regular CSR format when there is a large number of blocks. This format is well-suited for,
and intended to be used with the SUNLinearSolver cuSolverSp batchQR linear solver (see Section
11.12).

The header file to include when using this module is sunmatrix/sunmatrix cusparse.h. The
installed library to link to is libsundials sunmatrixcusparse.lib where .lib is typically .so for
shared libraries and .a for static libraries.

The SUNMatrix cuSparse module is experimental and subject to change. !

10.7.1 SUNMatrix cuSparse functions

The SUNMATRIX CUSPARSE module defines GPU-enabled sparse implementations of all matrix opera-
tions listed in Section 10.1.1 except for the SUNMatSpace and SUNMatMatvecSetup operations:

1. SUNMatGetID cuSparse – returns SUNMATRIX CUSPARSE

2. SUNMatClone cuSparse

3. SUNMatDestroy cuSparse

4. SUNMatZero cuSparse

5. SUNMatCopy cuSparse

6. SUNMatScaleAdd cuSparse – performs A = cA+B, where A and B must have the same sparsity
pattern

7. SUNMatScaleAddI cuSparse – performs A = cA+ I, where the diagonal of A must be present

8. SUNMatMatvec cuSparse

In addition, the SUNMATRIX CUSPARSE module defines the following implementation specific
functions:

SUNMatrix cuSparse NewCSR

Call A = SUNMatrix cuSparse NewCSR(M, N, NNZ, cusp)

Description This constructor function creates and allocates memory for a SUNMATRIX CUSPARSE

SUNMatrix that uses the CSR storage format.

Arguments M (int) the number of matrix rows
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N (int) the number of matrix columns

NNZ (int) the number of matrix nonzeros

cusp (cusparseHandle t) a valid cusparseHandle t

Return value a SUNMatrix object if successful else NULL

SUNMatrix cuSparse NewBlockCSR

Call A = SUNMatrix cuSparse NewBlockCSR(nblocks, blockrows, blockcols, blocknnz,

cusp)

Description This constructor function creates and allocates memory for a SUNMATRIX CUSPARSE

SUNMatrix that leverages the SUNMAT CUSPARSE BCSR storage format to store a block
diagonal matrix where each block shares the same sparsity pattern. The blocks must
be square.

Arguments nblocks (int) the number of matrix blocks

blockrows (int) the number of rows for a block

blockcols (int) the number of columns for a block

blocknnz (int) the number of nonzeros in a block

cusp a valid cusparseHandle t

Return value a SUNMatrix object if successful else NULL

Notes The SUNMAT CUSPARSE BCSR format currently only supports square matrices.

SUNMatrix cuSparse MakeCSR

Call A = SUNMatrix cuSparse MakeCSR(mat descr, M, N, NNZ, rowptrs, colind, data,

cusp)

Description This constructor function creates and allocates memory for a SUNMATRIX CUSPARSE

SUNMatrix that uses the CSR storage format from the user provided pointers.

Arguments mat decsr a valid cusparseMatDescr t object; must use CUSPARSE INDEX BASE ZERO

indexing

M (int) the number of matrix rows

N (int) the number of matrix columns

NNZ (int) the number of matrix nonzeros

rowptrs (int*)a contiguous array of the CSR row pointers

colind (int*) a contiguous array of the CSR column indices

data (realtype*) a contiguous array of the nonzero data

cusp (cusparseHandle t) a valid cusparseHandle t

Return value a SUNMatrix object if successful else NULL

SUNMatrix cuSparse Rows

Call M = SUNMatrix cuSparse Rows(A)

Description This function returns the number of rows in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of rows in the sparse SUNMatrix
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SUNMatrix cuSparse Columns

Call N = SUNMatrix cuSparse Columns(A)

Description This function returns the number of columns in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of columns in the sparse SUNMatrix

SUNMatrix cuSparse NNZ

Call nnz = SUNMatrix cuSparse NNZ(A)

Description This function returns the number of nonzeros in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of nonzeros in the sparse SUNMatrix

SUNMatrix cuSparse SparseType

Call type = SUNMatrix cuSparse SparseType(A)

Description This function returns the sparsity format for the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the SUNMAT CUSPARSE CSR or SUNMAT CUSPARSE BCSR sparsity formats

SUNMatrix cuSparse IndexValues

Call colind = SUNMatrix cuSparse IndexValues(A)

Description This function returns a pointer to the index value array for the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value for the CSR format this is an array of the column indices for each nonzero entry. For
the BCSR format this is an array of the column indices for each nonzero entry in the
first block only.

SUNMatrix cuSparse IndexPointers

Call rowptrs = SUNMatrix cuSparse IndexPointers(A)

Description This function returns a pointer to the index pointers array for the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value for the CSR format this is an array of the locations of the first entry of each row in the
data and indexvalues arrays, for the BCSR format this is an array of the locations of
each row in the data and indexvalues arrays in the first block only.

SUNMatrix cuSparse NumBlocks

Call nblocks = SUNMatrix cuSparse NumBlocks(A)

Description This function returns the number of blocks in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of matrix blocks
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SUNMatrix cuSparse BlockRows

Call blockrows = SUNMatrix cuSparse BlockRows(A)

Description This function returns the number of rows of a block of the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of rows of a block

SUNMatrix cuSparse BlockColumns

Call blockrows = SUNMatrix cuSparse BlockColumns(A)

Description This function returns the number of columns of a block of the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of columns of a block

SUNMatrix cuSparse BlockNNZ

Call blockdim = SUNMatrix cuSparse BlockNNZ(A)

Description This function returns the nonzeros of a block of the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of nonzeros of a block

SUNMatrix cuSparse BlockData

Call nzdata = SUNMatrix cuSparse BlockData(A, blockidx)

Description This function returns a pointer to the start of the nonzero values in the data array for
given block index. The first block in the SUNMatrix is index 0, the second block is index
1, and so on.

Arguments A (SUNMatrix)

blockidx (int) the index of the desired block

Return value a pointer to the start of the nonzero values in the data array for given block index

SUNMatrix cuSparse CopyToDevice

Call retval = SUNMatrix cuSparse CopyToDevice(A, h data, h idxptrs, h idxvals)

Description This functions copies the matrix information to the GPU device from the provided host
arrays. A user may provide NULL for any of h data, h idxptrs, or h idxvals to avoid
copying that information.

Arguments A (SUNMatrix)

h data (realtype*) a pointer to an allocated array of at least SUNMatrix cuSparse NNZ(A)

* sizeof(realtype) bytes; the nonzero values will be copied from this array
onto the device

h idxptrs (int*) a pointer to an allocated array of at least (SUNMatrix cuSparse BlockDim(A)+1)

* sizeof(int) bytes; the index pointers will be copied from this array onto
the device

h idxvals (int*) a pointer to an allocated array of at least SUNMatrix cuSparse BlockNNZ(A)

* sizeof(int) bytes; the index values will be copied from this array onto
the device

Return value SUNMAT SUCCESS if the copy operation(s) were successful, or a nonzero error code oth-
erwise.
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SUNMatrix cuSparse CopyFromDevice

Call retval = SUNMatrix cuSparse CopyFromDevice(A, h data, h idxptrs, h idxvals)

Description This functions copies the matrix information from the GPU device to the provided host
arrays. A user may provide NULL for any of h data, h idxptrs, or h idxvals to avoid
copying that information.

Arguments A (SUNMatrix)

h data (realtype*) a pointer to an allocated array of at least SUNMatrix cuSparse NNZ(A)

* sizeof(realtype) bytes; the nonzero values will be copied into this array
from the device

h idxptrs (int*) a pointer to an allocated array of at least (SUNMatrix cuSparse BlockDim(A)+1)

* sizeof(int) bytes; the index pointers will be copied into this array from
the device

h idxvals (int*) a pointer to an allocated array of at least SUNMatrix cuSparse BlockNNZ(A)

* sizeof(int) bytes; the index values will be copied into this array from
the device

Return value SUNMAT SUCCESS if the copy operation(s) were successful, or a nonzero error code oth-
erwise.

SUNMatrix cuSparse SetKernelExecPolicy

Call retval = SUNMatrix cuSparse SetKernelExecPolicy(A, exec policy);

Description This function sets the execution policies which control the kernel parameters utilized
when launching the CUDA kernels. By default the matrix is setup to use a policy which
tries to leverage the structure of the matrix. See section 9.9.2 for more information
about the SUNCudaExecPolicy class.

Arguments A (SUNMatrix)

exec policy (SUNCudaExecPolicy*)

Return value SUNMAT SUCCESS if the operation(s) were successful, or a nonzero error code otherwise.

Notes All matrices and vector used in a single instance of a sundials solver must use the
same cuda stream, and the cuda stream must be set prior to solver initialization.

SUNMatrix cuSparse SetFixedPattern

Call retval = SUNMatrix cuSparse SetFixedPattern(A, yesno)

Description This function changes the behavior of the the SUNMatZero operation on the SUNMatrix

object A. By default the matrix sparsity pattern is not considered to be fixed, thus,
the SUNMatZero operation zeros out all data array as well as the indexvalues and
indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not
the indexvalues or indexpointers arrays. Providing a value of 0 or SUNFALSE for the
yesno argument is equivalent to the default behavior.

Arguments A (SUNMatrix)

yesno (booleantype)

Return value SUNMAT SUCCESS if the operation(s) were successful, or a nonzero error code otherwise.

10.7.2 SUNMatrix cuSparse Usage Notes

The SUNMATRIX CUSPARSE module only supports 32-bit indexing, thus sundials must be built for
32-bit indexing to use this module.
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The SUNMATRIX CUSPARSE module can be used with CUDA streams by calling the cuSPARSE func-
tion cusparseSetStream on the the cusparseHandle t that is provided to the SUNMATRIX CUSPARSE

constructor.
When using the SUNMATRIX CUSPARSE module with a sundials package (e.g. cvode), the stream!

given to cuSPARSE should be the same stream used for the nvector object that is provided to the
package, and the nvector object given to the SUNMatvec operation. If different streams are utilized,
synchronization issues may occur.

10.8 The SUNMATRIX MAGMADENSE implementation

The SUNMATRIX MAGMADENSE implementation of the sundials SUNMatrix API interfaces to the MAGMA
() linear algebra library, and can target NVIDIA’s CUDA programming model or AMD’s HIP pro-
gramming model [55]. All data stored by this matrix implementation resides on the GPU at all times.
The implementation currently supports a standard LAPACK column-major storage format as well as
a low-storage format for block-diagonal matrices

A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

 .
This matrix implementation is best paired with the SUNLINEARSOLVER MAGMADENSE SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix magmadense.h. The
installed library to link to is libsundials sunmatrixmagmadense.lib where .lib is typically .so

for shared libraries and .a for static libraries.

The SUNMATRIX MAGMADENSE module is experimental and subject to change.!

10.8.1 SUNMATRIX MAGMADENSE functions

The SUNMATRIX MAGMADENSE module defines GPU-enabled implementations of all matrix operations
listed in Section 10.1.1.

1. SUNMatGetID MagmaDense – returns SUNMATRIX MAGMADENSE

2. SUNMatClone MagmaDense

3. SUNMatDestroy MagmaDense

4. SUNMatZero MagmaDense

5. SUNMatCopy MagmaDense

6. SUNMatScaleAdd MagmaDense

7. SUNMatScaleAddI MagmaDense

8. SUNMatMatvecSetup MagmaDense

9. SUNMatMatvec MagmaDense

10. SUNMatSpace MagmaDense

In addition, the SUNMATRIX MAGMADENSE module defines the following implementation spe-
cific functions:

https://icl.utk.edu/magma/
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SUNMatrix MagmaDense

Call A = SUNMatrix MagmaDense(M, N, memtype, memhelper, queue)

Description This constructor function creates and allocates memory for anM×N SUNMATRIX MAGMADENSE

SUNMatrix.

Arguments M (sunindextype) the number of matrix rows

N (sunindextype) the number of matrix columns

memtype (SUNMemoryType) the type of memory to use for the matrix data; can be
SUNMEMTYPE UVM or SUNMEMTYPE DEVICE.

memhelper (SUNMemoryHelper) the memory helper used for allocating data

queue a cudaStream t when using CUDA or a hipStream t when using HIP

Return value A SUNMatrix object if successful else NULL.

SUNMatrix MagmaDenseBlock

Call A = SUNMatrix MagmaDenseBlock(nblocks, M block, N block, memtype, memhelper,

queue)

Description This constructor function creates and allocates memory for a SUNMATRIX MAGMADENSE

SUNMatrix that is block diagonal with nblocks blocks of size M ×N .

Arguments nblocks (sunindextype) the number of matrix blocks

M block (sunindextype) the number of matrix rows in each block

N block (sunindextype) the number of matrix columns in each block

memtype (SUNMemoryType) the type of memory to use for the matrix data; can be
SUNMEMTYPE UVM or SUNMEMTYPE DEVICE.

memhelper (SUNMemoryHelper) the memory helper used for allocating data

queue a cudaStream t when using CUDA or a hipStream t when using HIP

Return value A SUNMatrix object if successful else NULL.

Notes The block diagonal format currently supports square matrices only.

SUNMatrix MagmaDense Rows

Call M = SUNMatrix MagmaDense Rows(A)

Description This function returns the rows dimension for the M×N SUNMatrix. For block diagonal
matrices, this is computed as Mblock × nblocks.

Arguments A (SUNMatrix)

Return value The number of rows in the SUNMatrix.

SUNMatrix MagmaDense Columns

Call N = SUNMatrix MagmaDense Columns(A)

Description This function returns the columns dimension for the M × N SUNMatrix. For block
diagonal matrices, this is computed as Nblock × nblocks.

Arguments A (SUNMatrix)

Return value The number of columns in the SUNMatrix.
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SUNMatrix MagmaDense BlockRows

Call M = SUNMatrix MagmaDense BlockRows(A)

Description This function returns the number of rows in a block of the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of rows in a block of the SUNMatrix.

SUNMatrix MagmaDense BlockColumns

Call N = SUNMatrix MagmaDense BlockColumns(A)

Description This function returns the number of columns in a block of the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of columns in a block of the SUNMatrix.

SUNMatrix MagmaDense LData

Call ldata = SUNMatrix MagmaDense LData(A)

Description This function returns the length of the data array for the SUNMatrix.

Arguments A (SUNMatrix)

Return value The length of the data array for the SUNMatrix.

SUNMatrix MagmaDense NumBlocks

Call nblocks = SUNMatrix MagmaDense NumBlocks(A)

Description This function returns the number of blocks in the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of matrix blocks.

SUNMatrix MagmaDense Data

Call data = SUNMatrix MagmaDense Data(A)

Description This function returns the SUNMatrix data array.

Arguments A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.

SUNMatrix MagmaDense BlockData

Call data = SUNMatrix MagmaDense BlockData(A)

Description This function returns an array of pointers that point to the start of the data array for
each block.

Arguments A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.

SUNMatrix MagmaDense Block

Call data = SUNMatrix MagmaDense Block(A, k)

Description This function returns a pointer to the data for block k.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for block k in the SUNMatrix.

Notes No bounds-checking is performed, k should be stricly less than nblocks.
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SUNMatrix MagmaDense Column

Call data = SUNMatrix MagmaDense Column(A, j)

Description This function returns a pointer to the data for column j of the matrix.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of the SUNMatrix.

Notes No bounds-checking is performed, j should be stricly less than nblocks ∗Nblock.

SUNMatrix MagmaDense BlockColumn

Call data = SUNMatrix MagmaDense Column(A, k, j)

Description This function returns a pointer to the data for column j of block k.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of block k in the SUNMatrix.

Notes No bounds-checking is performed.

SUNMatrix MagmaDense CopyToDevice

Call retval = SUNMatrix MagmaDense CopyToDevice(A, h data)

Description This functions copies the matrix data to the GPU device from the provided host array.

Arguments A (SUNMatrix)

h data (realtype*)

Return value SUNMAT SUCCESS if the copy operation was successful, or a nonzero error code otherwise

SUNMatrix MagmaDense CopyFromDevice

Call retval = SUNMatrix MagmaDense CopyFromDevice(A, h data)

Description This functions copies the matrix data from the GPU device to the provided host array.

Arguments A (SUNMatrix)

h data (realtype*)

Return value SUNMAT SUCCESS if the copy operation was successful, or a nonzero error code otherwise

10.8.2 SUNMATRIX MAGMADENSE Usage Notes

When using the SUNMATRIX MAGMADENSE module with a sundials package (e.g. cvode), the stream !

given to matrix should be the same stream used for the nvector object that is provided to the
package, and the nvector object given to the SUNMatvec operation. If different streams are utilized,
synchronization issues may occur.

10.9 The SUNMATRIX ONEMKLDENSE implementation

The SUNMATRIX ONEMKLDENSE implementation of the SUNMatrix class is intended for interfacing with
direct linear solvers from the Intel oneAPI Math Kernel Library (oneMKL) using the SYCL (DPC++)
programming model. The implementation currently supports a standard LAPACK column-major
storage format as well as a low-storage format for block-diagonal matrices

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1



https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
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This matrix implementation is best paired with the SUNLINEARSOLVER ONEMKLDENSE SUNLinearSolver.

The header file to include when using this class is sunmatrix/sunmatrix onemkldense.h. The
installed library to link to is libsundials sunmatrixonekkldense.lib where .lib is typically .so

for shared libraries and .a for static libraries.

The SUNMATRIX ONEMKLDENSE class is experimental and subject to change.!

10.9.1 SUNMATRIX ONEMKLDENSE functions

The SUNMATRIX ONEMKLDENSE class defines implementations of the following matrix operations listed
in Section 10.1.1.

1. SUNMatGetID OneMklDense – returns SUNMATRIX ONEMKLDENSE

2. SUNMatClone OneMklDense

3. SUNMatDestroy OneMklDense

4. SUNMatZero OneMklDense

5. SUNMatCopy OneMklDense

6. SUNMatScaleAdd OneMklDense

7. SUNMatScaleAddI OneMklDense

8. SUNMatMatvec OneMklDense

9. SUNMatSpace OneMklDense

In addition, the SUNMATRIX ONEMKLDENSE class class defines the following implementation specific
functions.

Constructors

SUNMatrix OneMklDense

Call A = SUNMatrix OneMklDense(M, N, memtype, memhelper, queue)

Description This constructor function creates and allocates memory for anM×N SUNMATRIX ONEMKLDENSE

SUNMatrix.

Arguments M (sunindextype) the number of matrix rows

N (sunindextype) the number of matrix columns

memtype (SUNMemoryType) the type of memory to use for the matrix data; can be
SUNMEMTYPE UVM or SUNMEMTYPE DEVICE.

memhelper (SUNMemoryHelper) the memory helper used for allocating data

queue (sycl::queue*) the SYCL queue to which operation will be submitted

Return value A SUNMatrix object if successful else NULL.
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SUNMatrix OneMklDenseBlock

Call A = SUNMatrix OneMklDenseBlock(nblocks, M block, N block, memtype, memhelper,

queue)

Description This constructor function creates and allocates memory for a SUNMATRIX ONEMKLDENSE

SUNMatrix that is block diagonal with nblocks blocks of size Mblock ×Nblock.

Arguments nblocks (sunindextype) the number of matrix blocks

M block (sunindextype) the number of matrix rows in each block

N block (sunindextype) the number of matrix columns in each block

memtype (SUNMemoryType) the type of memory to use for the matrix data; can be
SUNMEMTYPE UVM or SUNMEMTYPE DEVICE.

memhelper (SUNMemoryHelper) the memory helper used for allocating data

queue (sycl::queue*) the SYCL queue to which operation will be submitted

Return value A SUNMatrix object if successful else NULL.

Notes The block diagonal format currently supports square matrices only.

Access Matrix Dimensions

SUNMatrix OneMklDense Rows

Call M = SUNMatrix OneMklDense Rows(A)

Description This function returns the rows dimension for the M×N SUNMatrix. For block diagonal
matrices, this is computed as Mblock × nblocks.

Arguments A (SUNMatrix)

Return value The number of rows in the SUNMatrix.

SUNMatrix OneMklDense Columns

Call N = SUNMatrix OneMklDense Columns(A)

Description This function returns the columns dimension for the M × N SUNMatrix. For block
diagonal matrices, this is computed as Nblock × nblocks.

Arguments A (SUNMatrix)

Return value The number of columns in the SUNMatrix.

Access Matrix Block Dimensions

SUNMatrix OneMklDense NumBlocks

Call nblocks = SUNMatrix OneMklDense NumBlocks(A)

Description This function returns the number of blocks in the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of matrix blocks.

SUNMatrix OneMklDense BlockRows

Call M = SUNMatrix OneMklDense BlockRows(A)

Description This function returns the number of rows in a block of the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of rows in a block of the SUNMatrix.
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SUNMatrix OneMklDense BlockColumns

Call N = SUNMatrix OneMklDense BlockColumns(A)

Description This function returns the number of columns in a block of the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of columns in a block of the SUNMatrix.

Access Matrix Data

SUNMatrix OneMklDense LData

Call ldata = SUNMatrix OneMklDense LData(A)

Description This function returns the length of the data array for the SUNMatrix.

Arguments A (SUNMatrix)

Return value The length of the data array for the SUNMatrix.

SUNMatrix OneMklDense Data

Call data = SUNMatrix OneMklDense Data(A)

Description This function returns the SUNMatrix data array.

Arguments A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.

SUNMatrix OneMklDense Column

Call data = SUNMatrix OneMklDense Column(A, j)

Description This function returns a pointer to the data for column j of the matrix.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of the SUNMatrix.

Notes No bounds-checking is performed, j should be stricly less than nblocks ∗Nblock.

Access Matrix Data

SUNMatrix OneMklDense BlockLData

Call ldata = SUNMatrix OneMklDense BlockLData(A)

Description This function returns the length of the data array for the SUNMatrix for each block of
the SUNMatrix object.

Arguments A (SUNMatrix)

Return value The length of the data array for each block of the SUNMatrix.

SUNMatrix OneMklDense BlockData

Call data = SUNMatrix OneMklDense BlockData(A)

Description This function returns an array of pointers that point to the start of the data array for
each block.

Arguments A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.
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SUNMatrix OneMklDense Block

Call data = SUNMatrix OneMklDense Block(A, k)

Description This function returns a pointer to the data for block k.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for block k in the SUNMatrix.

Notes No bounds-checking is performed, k should be stricly less than nblocks.

SUNMatrix OneMklDense BlockColumn

Call data = SUNMatrix OneMklDense Column(A, k, j)

Description This function returns a pointer to the data for column j of block k.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of block k in the SUNMatrix.

Notes No bounds-checking is performed.

Copy Data

SUNMatrix OneMklDense CopyToDevice

Call retval = SUNMatrix OneMklDense CopyToDevice(A, h data)

Description This functions copies the matrix data to the GPU device from the provided host array.

Arguments A (SUNMatrix)

h data (realtype*)

Return value SUNMAT SUCCESS if the copy operation was successful, or a nonzero error code otherwise

SUNMatrix OneMklDense CopyFromDevice

Call retval = SUNMatrix OneMklDense CopyFromDevice(A, h data)

Description This functions copies the matrix data from the GPU device to the provided host array.

Arguments A (SUNMatrix)

h data (realtype*)

Return value SUNMAT SUCCESS if the copy operation was successful, or a nonzero error code otherwise

10.9.2 SUNMATRIX ONEMKLDENSE Usage Notes

The SUNMATRIX ONEMKLDENSE class only supports 64-bit indexing, thus sundials must be built for
64-bit indexing to use this class.

When using the SUNMATRIX ONEMKLDENSE class with a sundials package (e.g. cvode), the !

stream given to matrix should be the same stream used for the nvector object that is provided
to the package, and the nvector object given to the SUNMatvec operation. If different streams are
utilized, synchronization issues may occur.





Chapter 11

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the sundials packages oper-
ate using generic linear solver modules defined through the sunlinsol API. This allows sundials
packages to utilize any valid sunlinsol implementation that provides a set of required functions.
These functions can be divided into three categories. The first are the core linear solver functions.
The second group consists of “set” routines to supply the linear solver object with functions provided
by the sundials package, or for modification of solver parameters. The last group consists of “get”
routines for retrieving artifacts (statistics, residual vectors, etc.) from the linear solver. All of these
functions are defined in the header file sundials/sundials linearsolver.h.

The implementations provided with sundials work in coordination with the sundials generic
nvector and sunmatrix modules to provide a set of compatible data structures and solvers for the
solution of linear systems using direct or iterative (matrix-based or matrix-free) methods. Moreover,
advanced users can provide a customized SUNLinearSolver implementation to any sundials package,
particularly in cases where they provide their own nvector and/or sunmatrix modules.

Historically, the sundials packages have been designed to specifically leverage the use of either
direct linear solvers or matrix-free, scaled, preconditioned, iterative linear solvers. However, user-
supplied implementations for matrix-based iterative linear solvers and linear solvers with ‘embedded’
matrices are also supported.

The iterative linear solvers packaged with sundials leverage scaling and preconditioning, as ap-
plicable, to balance error between solution components and to accelerate convergence of the linear
solver. To this end, instead of solving the linear system Ax = b directly, these apply the underlying
iterative algorithm to the transformed system

Ãx̃ = b̃ (11.1)

where

Ã = S1P
−1
1 AP−12 S−12 ,

b̃ = S1P
−1
1 b, (11.2)

x̃ = S2P2x,

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−11 b,

• S2 is a diagonal matrix of scale factors for P2x.
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The scaling matrices are chosen so that S1P
−1
1 b and S2P2x have dimensionless components. If pre-

conditioning is done on the left only (P2 = I), by a matrix P , then S2 must be a scaling for x, while
S1 is a scaling for P−1b, and so may also be taken as a scaling for x. Similarly, if preconditioning is
done on the right only (P1 = I and P2 = P ), then S1 must be a scaling for b, while S2 is a scaling for
Px, and may also be taken as a scaling for b.

sundials packages request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance∥∥∥b̃− Ãx̃∥∥∥

2
< tol.

When provided an iterative sunlinsol implementation that does not support the scaling matrices
S1 and S2, sundials’ packages will adjust the value of tol accordingly (see §11.4.2 for more details).
In this case, they instead request that iterative linear solvers stop based on the criteria∥∥P−11 b− P−11 Ax

∥∥
2
< tol.

We note that the corresponding adjustments to tol in this case are non-optimal, in that they cannot
balance error between specific entries of the solution x, only the aggregate error in the overall solution
vector.

We further note that not all of the sundials-provided iterative linear solvers support the full
range of the above options (e.g., separate left/right preconditioning), and that some of the sundials
packages only utilize a subset of these options. Further details on these exceptions are described in
the documentation for each sunlinsol implementation, or for each sundials package.

For users interested in providing their own sunlinsol module, the following section presents
the sunlinsol API and its implementation beginning with the definition of sunlinsol functions in
sections 11.1.1 – 11.1.3. This is followed by the definition of functions supplied to a linear solver
implementation in section 11.1.4. A table of linear solver return codes is given in section 11.1.5. The
SUNLinearSolver type and the generic sunlinsol module are defined in section 11.1.6. The section
11.2 discusses compatibility between the sundials-provided sunlinsol modules and sunmatrix
modules. Section 11.3 lists the requirements for supplying a custom sunlinsol module and discusses
some intended use cases. Users wishing to supply their own sunlinsol module are encouraged to use
the sunlinsol implementations provided with sundials as a template for supplying custom linear
solver modules. The sunlinsol functions required by this sundials package as well as other package
specific details are given in section 11.4. The remaining sections of this chapter present the sunlinsol
modules provided with sundials.

11.1 The SUNLinearSolver API

The sunlinsol API defines several linear solver operations that enable sundials packages to utilize
any sunlinsol implementation that provides the required functions. These functions can be divided
into three categories. The first are the core linear solver functions. The second group of functions con-
sists of set routines to supply the linear solver with functions provided by the sundials time integrators
and to modify solver parameters. The final group consists of get routines for retrieving linear solver
statistics. All of these functions are defined in the header file sundials/sundials linearsolver.h.

11.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions to get the linear solver type
(SUNLinSolGetType) and solve the linear system Ax = b (SUNLinSolSolve). The remaining functions
are for getting the solver ID (SUNLinSolGetID), initializing the linear solver object once all solver-
specific options have been set (SUNLinSolInitialize), setting up the linear solver object to utilize
an updated matrix A (SUNLinSolSetup), and for destroying the linear solver object (SUNLinSolFree)
are optional.
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SUNLinSolGetType

Call type = SUNLinSolGetType(LS);

Description The required function SUNLinSolGetType returns the type identifier for the linear solver
LS. It is used to determine the solver type (direct, iterative, or matrix-iterative) from
the abstract SUNLinearSolver interface.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value The return value type (of type int) will be one of the following:

• SUNLINEARSOLVER DIRECT – 0, the sunlinsol module requires a matrix, and com-
putes an ‘exact’ solution to the linear system defined by that matrix.

• SUNLINEARSOLVER ITERATIVE – 1, the sunlinsol module does not require a matrix
(though one may be provided), and computes an inexact solution to the linear
system using a matrix-free iterative algorithm. That is it solves the linear system
defined by the package-supplied ATimes routine (see SUNLinSolSetATimes below),
even if that linear system differs from the one encoded in the matrix object (if one
is provided). As the solver computes the solution only inexactly (or may diverge),
the linear solver should check for solution convergence/accuracy as appropriate.

• SUNLINEARSOLVER MATRIX ITERATIVE – 2, the sunlinsol module requires a ma-
trix, and computes an inexact solution to the linear system defined by that matrix
using an iterative algorithm. That is it solves the linear system defined by the
matrix object even if that linear system differs from that encoded by the package-
supplied ATimes routine. As the solver computes the solution only inexactly (or
may diverge), the linear solver should check for solution convergence/accuracy as
appropriate.

• SUNLINEARSOLVER MATRIX EMBEDDED – 3, the sunlinsol module sets up and solves
the specified linear system at each linear solve call. Any matrix-related data struc-
tures are held internally to the linear solver itself, and are not provided by the
sundials package.

Notes See section 11.3.1 for more information on intended use cases corresponding to the linear
solver type.

F2003 Name FSUNLinSolGetType

SUNLinSolGetID

Call id = SUNLinSolGetID(LS);

Description The optional function SUNLinSolGetID returns the identifier for the linear solver LS.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value The return value id (of type int) will be a non-negative value defined by the enu-
meration SUNLinearSolver ID. The possible enumeration values are specified in the
sundials linearsolver.h header file.

Notes It is recommended that a user-supplied SUNLinearSolver return the
SUNLINEARSOLVER CUSTOM identifier.

F2003 Name FSUNLinSolGetID

SUNLinSolInitialize

Call retval = SUNLinSolInitialize(LS);

Description The optional function SUNLinSolInitialize performs linear solver initialization (as-
suming that all solver-specific options have been set).
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Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 11.1.

F2003 Name FSUNLinSolInitialize

SUNLinSolSetup

Call retval = SUNLinSolSetup(LS, A);

Description The optional function SUNLinSolSetup performs any linear solver setup needed, based
on an updated system sunmatrix A. This may be called frequently (e.g., with a full
Newton method) or infrequently (for a modified Newton method), based on the type of
integrator and/or nonlinear solver requesting the solves.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 11.1.

F2003 Name FSUNLinSolSetup

SUNLinSolSolve

Call retval = SUNLinSolSolve(LS, A, x, b, tol);

Description The required function SUNLinSolSolve solves a linear system Ax = b.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

x (N Vector) a nvector object containing the initial guess for the solution of the
linear system, and the solution to the linear system upon return.

b (N Vector) a nvector object containing the linear system right-hand side.

tol (realtype) the desired linear solver tolerance.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 11.1.

Notes Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER ITERATIVE) can ignore
the sunmatrix input A, and should instead rely on the matrix-vector product function
supplied through the routine SUNLinSolSetATimes.

Iterative solvers: (those that identify as SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE) should attempt to solve to the specified toler-
ance tol in a weighted 2-norm. If the solver does not support scaling then it should
just use a 2-norm.

Matrix-embedded solvers: should ignore the sunmatrix input A as this will be
NULL. It is assumed that within this call, the solver will call interface routines from the
relevant sundials package to directly form the relevant linear system matrix A, and
then solve the system before returning with the solution x.

F2003 Name FSUNLinSolSolve
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SUNLinSolFree

Call retval = SUNLinSolFree(LS);

Description The optional function SUNLinSolFree frees memory allocated by the linear solver.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call and a negative value for a failure.

F2003 Name FSUNLinSolFree

11.1.2 SUNLinearSolver set functions

The following set functions are used to supply linear solver modules with functions defined by the
sundials packages and to modify solver parameters. Only the routine for setting the matrix-vector
product routine is required, and even then is only required for matrix-free linear solver modules.
Otherwise, all other set functions are optional. sunlinsol implementations that do not provide the
functionality for any optional routine should leave the corresponding function pointer NULL instead of
supplying a dummy routine.

SUNLinSolSetATimes

Call retval = SUNLinSolSetATimes(LS, A data, ATimes);

Description The function SUNLinSolSetATimes is required for matrix-free linear solvers; otherwise
it is optional.

This routine provides an ATimesFn function pointer, as well as a void* pointer to a
data structure used by this routine, to a linear solver object. sundials packages will
call this function to set the matrix-vector product function to either a solver-provided
difference-quotient via vector operations or a user-supplied solver-specific routine.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A data (void*) data structure passed to ATimes.

ATimes (ATimesFn) function pointer implementing the matrix-vector product routine.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 11.1.

F2003 Name FSUNLinSolSetATimes

SUNLinSolSetPreconditioner

Call retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

Description The optional function SUNLinSolSetPreconditioner provides PSetupFn and PSolveFn

function pointers that implement the preconditioner solves P−11 and P−12 from equations
(11.1)-(11.2). This routine will be called by a sundials package, which will provide
translation between the generic Pset and Psol calls and the package- or user-supplied
routines.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Pdata (void*) data structure passed to both Pset and Psol.

Pset (PSetupFn) function pointer implementing the preconditioner setup.

Psol (PSolveFn) function pointer implementing the preconditioner solve.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 11.1.

F2003 Name FSUNLinSolSetPreconditioner
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SUNLinSolSetScalingVectors

Call retval = SUNLinSolSetScalingVectors(LS, s1, s2);

Description The optional function SUNLinSolSetScalingVectors provides left/right scaling vec-
tors for the linear system solve. Here, s1 and s2 are nvector of positive scale factors
containing the diagonal of the matrices S1 and S2 from equations (11.1)-(11.2), respec-
tively. Neither of these vectors need to be tested for positivity, and a NULL argument
for either indicates that the corresponding scaling matrix is the identity.

Arguments LS (SUNLinearSolver) a sunlinsol object.

s1 (N Vector) diagonal of the matrix S1

s2 (N Vector) diagonal of the matrix S2

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 11.1.

F2003 Name FSUNLinSolSetScalingVectors

SUNLinSolSetZeroGuess

Call retval = SUNLinSolSetZeroGuess(LS, onoff);

Description The optional function SUNLinSolSetZeroGuess indicates if the next call to SUNLinSolSolve
will be made with a zero initial guess.

Arguments LS (SUNLinearSolver) a sunlinsol object.

onoff (booleantype) a flag indicating if the initial guess to linear solver is zero (SUNTRUE)
or non-zero (SUNFALSE).

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 11.1.

Notes Is is assumed that the initial guess status is not retained across calls to SUNLinSolSolve.
As such, the linear solver interfaces in each of the sundials packages call SUNLinSolSetZeroGuess
prior to each call to SUNLinSolSolve.

F2003 Name FSUNLinSolSetZeroGuess

11.1.3 SUNLinearSolver get functions

The following get functions allow sundials packages to retrieve results from a linear solve. All routines
are optional.

SUNLinSolNumIters

Call its = SUNLinSolNumIters(LS);

Description The optional function SUNLinSolNumIters should return the number of linear iterations
performed in the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value int containing the number of iterations

F2003 Name FSUNLinSolNumIters

SUNLinSolResNorm

Call rnorm = SUNLinSolResNorm(LS);

Description The optional function SUNLinSolResNorm should return the final residual norm from
the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.
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Return value realtype containing the final residual norm

F2003 Name FSUNLinSolResNorm

SUNLinSolResid

Call rvec = SUNLinSolResid(LS);

Description If an iterative method computes the preconditioned initial residual and returns with
a successful solve without performing any iterations (i.e., either the initial guess or
the preconditioner is sufficiently accurate), then this optional routine may be called
by the sundials package. This routine should return the nvector containing the
preconditioned initial residual vector.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value N Vector containing the final residual vector

Notes Since N Vector is actually a pointer, and the results are not modified, this routine
should not require additional memory allocation. If the sunlinsol object does not
retain a vector for this purpose, then this function pointer should be set to NULL in the
implementation.

F2003 Name FSUNLinSolResid

SUNLinSolLastFlag

Call lflag = SUNLinSolLastFlag(LS);

Description The optional function SUNLinSolLastFlag should return the last error flag encountered
within the linear solver. This is not called by the sundials packages directly; it allows
the user to investigate linear solver issues after a failed solve.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value sunindextype containing the most recent error flag

F2003 Name FSUNLinSolLastFlag

SUNLinSolSpace

Call retval = SUNLinSolSpace(LS, &lrw, &liw);

Description The optional function SUNLinSolSpace should return the storage requirements for the
linear solver LS.

Arguments LS (SUNLinearSolver) a sunlinsol object.

lrw (long int*) the number of realtype words stored by the linear solver.

liw (long int*) the number of integer words stored by the linear solver.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 11.1.

Notes This function is advisory only, for use in determining a user’s total space requirements.

F2003 Name FSUNLinSolSpace

11.1.4 Functions provided by sundials packages

To interface with the sunlinsol modules, the sundials packages supply a variety of routines for
evaluating the matrix-vector product, and setting up and applying the preconditioner. These package-
provided routines translate between the user-supplied ODE, DAE, or nonlinear systems and the generic
interfaces to the linear systems of equations that result in their solution. The types for functions
provided to a sunlinsol module are defined in the header file sundials/sundials iterative.h,
and are described below.
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ATimesFn

Definition typedef int (*ATimesFn)(void *A data, N Vector v, N Vector z);

Purpose These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.

Arguments A data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.

v is the input vector to multiply.

z is the output vector computed.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

PSetupFn

Definition typedef int (*PSetupFn)(void *P data)

Purpose These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

PSolveFn

Definition typedef int (*PSolveFn)(void *P data, N Vector r, N Vector z,

realtype tol, int lr)

Purpose These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn). The parameter lr is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: lr = 1 for left
and lr = 2 for right. If preconditioning is on one side only, lr can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that

‖Pz − r‖wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system.

z is the solution vector for the preconditioner system.

tol is the desired tolerance for an iterative preconditioner.

lr is flag indicating whether the routine should perform left (1) or right (2) pre-
conditioning.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.
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11.1.5 SUNLinearSolver return codes

The functions provided to sunlinsol modules by each sundials package, and functions within the
sundials-provided sunlinsol implementations utilize a common set of return codes, shown in Table
11.1. These adhere to a common pattern: 0 indicates success, a postitive value corresponds to a
recoverable failure, and a negative value indicates a non-recoverable failure. Aside from this pattern,
the actual values of each error code are primarily to provide additional information to the user in case
of a linear solver failure.

Table 11.1: Description of the SUNLinearSolver error codes

Name Value Description

SUNLS SUCCESS 0 successful call or converged solve

SUNLS MEM NULL -801 the memory argument to the function is NULL

SUNLS ILL INPUT -802 an illegal input has been provided to the function

SUNLS MEM FAIL -803 failed memory access or allocation

SUNLS ATIMES NULL -804 the Atimes function is NULL

SUNLS ATIMES FAIL UNREC -805 an unrecoverable failure occurred in the ATimes routine

SUNLS PSET FAIL UNREC -806 an unrecoverable failure occurred in the Pset routine

SUNLS PSOLVE NULL -807 the preconditioner solve function is NULL

SUNLS PSOLVE FAIL UNREC -808 an unrecoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL UNREC -809 an unrecoverable failure occurred in an external linear
solver package

SUNLS GS FAIL -810 a failure occurred during Gram-Schmidt orthogonalization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS QRSOL FAIL -811 a singular R matrix was encountered in a QR factorization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS VECTOROP ERR -812 a vector operation error occurred

SUNLS RES REDUCED 801 an iterative solver reduced the residual, but did not con-
verge to the desired tolerance

SUNLS CONV FAIL 802 an iterative solver did not converge (and the residual was
not reduced)

SUNLS ATIMES FAIL REC 803 a recoverable failure occurred in the ATimes routine

SUNLS PSET FAIL REC 804 a recoverable failure occurred in the Pset routine

SUNLS PSOLVE FAIL REC 805 a recoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL REC 806 a recoverable failure occurred in an external linear solver
package

continued on next page
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Name Value Description

SUNLS QRFACT FAIL 807 a singular matrix was encountered during a QR factoriza-
tion (sunlinsol spgmr/sunlinsol spfgmr)

SUNLS LUFACT FAIL 808 a singular matrix was encountered during a LU factorization
(sunlinsol dense/sunlinsol band)

11.1.6 The generic SUNLinearSolver module

sundials packages interact with specific sunlinsol implementations through the generic sunlinsol
module on which all other sunlinsol iplementations are built. The SUNLinearSolver type is a
pointer to a structure containing an implementation-dependent content field, and an ops field. The
type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {

void *content;

struct _generic_SUNLinearSolver_Ops *ops;

};

where the generic SUNLinearSolver Ops structure is a list of pointers to the various actual lin-
ear solver operations provided by a specific implementation. The generic SUNLinearSolver Ops

structure is defined as

struct _generic_SUNLinearSolver_Ops {

SUNLinearSolver_Type (*gettype)(SUNLinearSolver);

SUNLinearSolver_ID (*getid)(SUNLinearSolver);

int (*setatimes)(SUNLinearSolver, void*, ATimesFn);

int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);

int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);

int (*setzeroguess)(SUNLinearSolver, booleantype);

int (*initialize)(SUNLinearSolver);

int (*setup)(SUNLinearSolver, SUNMatrix);

int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);

int (*numiters)(SUNLinearSolver);

realtype (*resnorm)(SUNLinearSolver);

sunindxetype (*lastflag)(SUNLinearSolver);

int (*space)(SUNLinearSolver, long int*, long int*);

N_Vector (*resid)(SUNLinearSolver);

int (*free)(SUNLinearSolver);

};

The generic sunlinsol module defines and implements the linear solver operations defined in
Sections 11.1.1-11.1.3. These routines are in fact only wrappers to the linear solver operations de-
fined by a particular sunlinsol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic sunlinsol module, namely SUNLinSolInitialize, which
initializes a sunlinsol object for use after it has been created and configured, and returns a flag
denoting a successful/failed operation:
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int SUNLinSolInitialize(SUNLinearSolver S)

{

return ((int) S->ops->initialize(S));

}

The Fortran 2003 interface provides a bind(C) derived-type for the generic SUNLinearSolver

and the generic SUNLinearSolver Ops structures. Their definition is given below.

type, bind(C), public :: SUNLinearSolver

type(C_PTR), public :: content

type(C_PTR), public :: ops

end type SUNLinearSolver

type, bind(C), public :: SUNLinearSolver_Ops

type(C_FUNPTR), public :: gettype

type(C_FUNPTR), public :: setatimes

type(C_FUNPTR), public :: setpreconditioner

type(C_FUNPTR), public :: setscalingvectors

type(C_FUNPTR), public :: setzeroguess

type(C_FUNPTR), public :: initialize

type(C_FUNPTR), public :: setup

type(C_FUNPTR), public :: solve

type(C_FUNPTR), public :: numiters

type(C_FUNPTR), public :: resnorm

type(C_FUNPTR), public :: lastflag

type(C_FUNPTR), public :: space

type(C_FUNPTR), public :: resid

type(C_FUNPTR), public :: free

end type SUNLinearSolver_Ops

11.2 Compatibility of SUNLinearSolver modules

We note that not all sunlinsol types are compatible with all sunmatrix and nvector types provided
with sundials. In Table 11.2 we show the matrix-based linear solvers available as sunlinsol modules,
and the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between
all sunlinsol modules and vector implementations.

Table 11.2: sundials matrix-based linear solvers and matrix implementations that can be used for
each.

Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

SLUNRloc
Matrix

User
Supplied

Dense X X
Band X X
LapackDense X X
LapackBand X X
klu X X
SuperLU DIST X X
superlumt X X

continued on next page
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Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

SLUNRloc
Matrix

User
Supplied

User supplied X X X X X

11.3 Implementing a custom SUNLinearSolver module

A particular implementation of the sunlinsol module must:

• Specify the content field of the SUNLinearSolver object.

• Define and implement a minimal subset of the linear solver operations. See the section 11.4 to
determine which sunlinsol operations are required for this sundials package.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunlinsol module (each with different SUNLinearSolver internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in
the ops structure. This allows the sundials package that is using the sunlinsol object to know that
the associated functionality is not supported.

To aid in the creation of custom sunlinsol modules the generic sunlinsol module provides the
utility functions SUNLinSolNewEmpty and SUNLinSolFreeEmpty. When used in custom sunlinsol
constructors the function SUNLinSolNewEmpty will ease the introduction of any new optional linear
solver operations to the sunlinsol API by ensuring only required operations need to be set.

SUNLinSolNewEmpty

Call LS = SUNLinSolNewEmpty();

Description The function SUNLinSolNewEmpty allocates a new generic sunlinsol object and initial-
izes its content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns a SUNLinearSolver object. If an error occurs when allocating
the object, then this routine will return NULL.

F2003 Name FSUNLinSolNewEmpty

SUNLinSolFreeEmpty

Call SUNLinSolFreeEmpty(LS);

Description This routine frees the generic SUNLinSolFreeEmpty object, under the assumption that
any implementation-specific data that was allocated within the underlying content struc-
ture has already been freed. It will additionally test whether the ops pointer is NULL,
and, if it is not, it will free it as well.

Arguments LS (SUNLinearSolver)

Return value None

F2003 Name FSUNLinSolFreeEmpty

Additionally, a sunlinsol implementation may do the following:
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• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver,
e.g., for setting various configuration options to tune the linear solver to a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for
returning various solve statistics.

11.3.1 Intended use cases

The sunlinsol (and sunmatrix) APIs are designed to require a minimal set of routines to ease
interfacing with custom or third-party linear solver libraries. External solvers provide similar routines
with the necessary functionality and thus will require minimal effort to wrap within custom sunma-
trix and sunlinsol implementations. Sections 10.2 and 11.4 include a list of the required set of
routines that compatible sunmatrix and sunlinsol implementations must provide. As sundials
packages utilize generic sunlinsol modules allowing for user-supplied SUNLinearSolver implemen-
tations, there exists a wide range of possible linear solver combinations. Some intended use cases
for both the sundials-provided and user-supplied sunlinsol modules are discussd in the following
sections.

Direct linear solvers

Direct linear solver modules require a matrix and compute an ‘exact’ solution to the linear system
defined by the matrix. Multiple matrix formats and associated direct linear solvers are supplied with
sundials through different sunmatrix and sunlinsol implementations. sundials packages strive
to amortize the high cost of matrix construction by reusing matrix information for multiple nonlinear
iterations. As a result, each package’s linear solver interface recomputes Jacobian information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided
by, or interfaced with, sundials can leverage this infrastructure with minimal effort. To do so, a user
must implement custom sunmatrix and sunlinsol wrappers for the desired matrix format and/or
linear solver following the APIs described in Chapters 10 and 11. This user-supplied sunlinsol
module must then self-identify as having SUNLINEARSOLVER DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix and compute an inexact solution to
the linear system defined by the package-supplied ATimes routine. sundials supplies multiple scaled,
preconditioned iterative linear solver (spils) sunlinsol modules that support scaling to allow users to
handle non-dimensionalization (as best as possible) within each sundials package and retain variables
and define equations as desired in their applications. For linear solvers that do not support left/right
scaling, the tolerance supplied to the linear solver is adjusted to compensate (see section 11.4.2 for
more details); however, this use case may be non-optimal and cannot handle situations where the
magnitudes of different solution components or equations vary dramatically within a single problem.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, sun-
dials a user must implement a custom sunlinsol wrapper for the linear solver following the API
described in Chapter 11. This user-supplied sunlinsol module must then self-identify as having
SUNLINEARSOLVER ITERATIVE type.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to
the linear system defined by the matrix. This matrix will be updated infrequently and resued across
multiple solves to amortize cost of matrix construction. As in the direct linear solver case, only
wrappers for the matrix and linear solver in sunmatrix and sunlinsol implementations need to be
created to utilize a new linear solver. This user-supplied sunlinsol module must then self-identify as
having SUNLINEARSOLVER MATRIX ITERATIVE type.
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At present, sundials has one example problem that uses this approach for wrapping a structured-
grid matrix, linear solver, and preconditioner from the hypre library that may be used as a template
for other customized implementations (see examples/arkode/CXX parhyp/ark heat2D hypre.cpp).

Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver module where the matrix is purely
for preconditioning and the linear system is defined by the package-supplied ATimes routine, we envision
two current possibilities.

The preferred approach is for users to employ one of the sundials spils sunlinsol implementa-
tions (sunlinsol spgmr, sunlinsol spfgmr, sunlinsol spbcgs, sunlinsol sptfqmr, or sunlin-
sol pcg) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing
with the corresponding linear solver, can be handled through a package’s preconditioner ‘setup’ and
‘solve’ functionality (see §4.5.8.2) without creating sunmatrix and sunlinsol implementations. This
usage mode is recommended primarily because the sundials-provided spils modules support the scal-
ing as described above.

A second approach supported by the linear solver APIs is as follows. If the sunlinsol implemen-
tation is matrix-based, self-identifies as having SUNLINEARSOLVER ITERATIVE type, and also provides
a non-NULL SUNLinSolSetATimes routine, then each sundials package will call that routine to attach
its package-specific matrix-vector product routine to the sunlinsol object. The sundials package
will then call the sunlinsol-provided SUNLinSolSetup routine (infrequently) to update matrix infor-
mation, but will provide current matrix-vector products to the sunlinsol implementation through
the package-supplied ATimesFn routine.

Application-specific linear solvers with embedded matrix structure

Many applications can exploit additional linear system structure due to the implicit couplings in their
model equations. In certain circumstances, the linear solve Ax = b may be performed without the
need for a global system matrix A, as the unformed A may be block diagonal or block triangular,
and thus the overall linear solve may be performed through a sequence of smaller linear solves. In
other circumstances, a linear system solve may be accomplished via specialized fast solvers, such as
the fast Fourier transform, fast multipole method, or treecode, in which case no matrix structure may
be explicitly necessary. Furthermore, in many of these situations construction and preprocessing of
the linear system matrix A may be inexpensive, and thus increased performance may be possible if
the current linear system information is used within every solve (instead of being lagged, as occurs
with matrix-based solvers that reuse A).

To support such application-specific situations, sundials supports user-provided linear solvers
with the SUNLINEARSOLVER MATRIX EMBEDDED type. For an application to leverage this support,
it should define a custom sunlinsol implementation having this type. For this implementation,
only the required SUNLinSolGetType and SUNLinSolSolve operations should be needed. Within
SUNLinSolSolve, the linear solver implementation should call package-specific interface routines (e.g.,
ARKStepGetNonlinearSystemData, CVodeGetNonlinearSystemData, IDAGetNonlinearSystemData,
ARKStepGetCurrentGamma, CVodeGetCurrentGamma, IDAGetCurrentCj or MRIStepGetCurrentGamma)
to construct the relevant system matrix A (or portions thereof), solve the linear system Ax = b, and
return the solution vector x.

We note that when attaching this custom sunlinsol object with the relevant sundials package
SetLinearSolver routine, the input sunmatrix A should be set to NULL.

11.4 IDAS SUNLinearSolver interface

Table 11.3 below lists the sunlinsol module linear solver functions used within the idals interface.
As with the sunmatrix module, we emphasize that the ida user does not need to know detailed usage
of linear solver functions by the ida code modules in order to use ida. The information is presented
as an implementation detail for the interested reader.
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The linear solver functions listed below are marked with Xto indicate that they are required, or
with † to indicate that they are only called if they are non-NULL in the sunlinsol implementation
that is being used. Note:

1. Although idals does not call SUNLinSolLastFlag directly, this routine is available for users to
query linear solver issues directly.

2. Although idals does not call SUNLinSolFree directly, this routine should be available for users
to call when cleaning up from a simulation.

Table 11.3: List of linear solver function usage in the idals interface
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SUNLinSolGetType X X X
SUNLinSolSetATimes † X †

SUNLinSolSetPreconditioner † † †
SUNLinSolSetScalingVectors † † †

SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X

SUNLinSolNumIters X X
SUNLinSolResid X X

1SUNLinSolLastFlag
2SUNLinSolFree

SUNLinSolSpace † † †

Since there are a wide range of potential sunlinsol use cases, the following subsections describe
some details of the idals interface, in the case that interested users wish to develop custom sunlinsol
modules.

11.4.1 Lagged matrix information

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER DIRECT or
SUNLINEARSOLVER MATRIX ITERATIVE, then the sunlinsol object solves a linear system defined by a
sunmatrix object. idals will update the matrix information infrequently according to the strategies
outlined in §2.1. To this end, we differentiate between the desired linear system Mx = b and the
actual linear system M̄x̄ = b. Since idals updates the sunmatrix object infrequently, it is likely
that α 6= ᾱ, and in turn M 6= M̄ . Therefore, after calling the sunlinsol-provided SUNLinSolSolve

routine, we test whether α/ᾱ 6= 1, and if this is the case we scale the solution x̄ to correct the linear
system solution x via

x =
2

1 + α/ᾱ
x̄. (11.3)

The motivation for this selection of the scaling factor c = 2/(1+α/ᾱ) is discussed in detail in [11, 34].
In short, if we consider a stationary iteration for the linear system as consisting of a solve with M̄
followed by scaling by c, then for a linear constant-coefficient problem, the error in the solution vector
will be reduced at each iteration by the error matrix E = I − cM̄−1M , with a convergence rate given
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by the spectral radius of E. Assuming that stiff systems have a spectrum spread widely over the left
half-plane, c is chosen to minimize the magnitude of the eigenvalues of E.

11.4.2 Iterative linear solver tolerance

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE then idals will set the input tolerance delta as described in
§2.1. However, if the iterative linear solver does not support scaling matrices (i.e., the
SUNLinSolSetScalingVectors routine is NULL), then idals will attempt to adjust the linear solver
tolerance to account for this lack of functionality. To this end, the following assumptions are made:

1. All solution components have similar magnitude; hence the error weight vector W used in the
WRMS norm (see §2.1) should satisfy the assumption

Wi ≈Wmean, for i = 0, . . . , n− 1.

2. The sunlinsol object uses a standard 2-norm to measure convergence.

Since ida uses identical left and right scaling matrices, S1 = S2 = S = diag(W ), then the linear
solver convergence requirement is converted as follows (using the notation from equations (11.1)-
(11.2)): ∥∥∥b̃− Ãx̃∥∥∥

2
< tol

⇔
∥∥SP−11 b− SP−11 Ax

∥∥
2
< tol

⇔
n−1∑
i=0

[
Wi

(
P−11 (b−Ax)

)
i

]2
< tol2

⇔ W 2
mean

n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
< tol2

⇔
n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
<

(
tol

Wmean

)2

⇔
∥∥P−11 (b−Ax)

∥∥
2
<

tol

Wmean

Therefore the tolerance scaling factor

Wmean = ‖W‖2/
√
n

is computed and the scaled tolerance delta= tol/Wmean is supplied to the sunlinsol object.

11.5 The SUNLinearSolver Dense implementation

This section describes the sunlinsol implementation for solving dense linear systems. The sunlin-
sol dense module is designed to be used with the corresponding sunmatrix dense matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).

To access the sunlinsol dense module, include the header file sunlinsol/sunlinsol dense.h.
We note that the sunlinsol dense module is accessible from sundials packages without separately
linking to the libsundials sunlinsoldense module library.
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11.5.1 SUNLinearSolver Dense description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

11.5.2 SUNLinearSolver Dense functions

The sunlinsol dense module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol Dense

Call LS = SUNLinSol Dense(y, A);

Description The function SUNLinSol Dense creates and allocates memory for a dense
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNDenseLinearSolver with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol Dense

The sunlinsol dense module defines implementations of all “direct” linear solver operations listed
in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType Dense

• SUNLinSolInitialize Dense – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Dense – this performs the LU factorization.

• SUNLinSolSolve Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Dense

• SUNLinSolSpace Dense – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Dense

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.
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11.5.3 SUNLinearSolver Dense Fortran interfaces

The sunlinsol dense module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol dense mod Fortran module defines interfaces to all sunlinsol dense C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Dense is
interfaced as FSUNLinSol Dense.

The Fortran 2003 sunlinsol dense interface module can be accessed with the use statement,
i.e. use fsunlinsol dense mod, and linking to the library libsundials fsunlinsoldense mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsoldense mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol dense module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNDENSELINSOLINIT

Call FSUNDENSELINSOLINIT(code, ier)

Description The function FSUNDENSELINSOLINIT can be called for Fortran programs to create a
dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol dense module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSDENSELINSOLINIT

Call FSUNMASSDENSELINSOLINIT(ier)

Description The function FSUNMASSDENSELINSOLINIT can be called for Fortran programs to create
a dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

11.5.4 SUNLinearSolver Dense content

The sunlinsol dense module defines the content field of a SUNLinearSolver as the following struc-
ture:
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struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

11.6 The SUNLinearSolver Band implementation

This section describes the sunlinsol implementation for solving banded linear systems. The sunlin-
sol band module is designed to be used with the corresponding sunmatrix band matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).

To access the sunlinsol band module, include the header file sunlinsol/sunlinsol band.h.
We note that the sunlinsol band module is accessible from sundials packages without separately
linking to the libsundials sunlinsolband module library.

11.6.1 SUNLinearSolver Band description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml. !

11.6.2 SUNLinearSolver Band functions

The sunlinsol band module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol Band

Call LS = SUNLinSol Band(y, A);

Description The function SUNLinSol Band creates and allocates memory for a band
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.
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Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNBandLinearSolver with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol Band

The sunlinsol band module defines band implementations of all “direct” linear solver operations
listed in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType Band

• SUNLinSolInitialize Band – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Band – this performs the LU factorization.

• SUNLinSolSolve Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Band

• SUNLinSolSpace Band – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Band

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

11.6.3 SUNLinearSolver Band Fortran interfaces

The sunlinsol band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol band mod Fortran module defines interfaces to all sunlinsol band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Band is
interfaced as FSUNLinSol Band.

The Fortran 2003 sunlinsol band interface module can be accessed with the use statement,
i.e. use fsunlinsol band mod, and linking to the library libsundials fsunlinsolband mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol band module also includes
a Fortran-callable function for creating a SUNLinearSolver object.



11.7 The SUNLinearSolver LapackDense implementation 337

FSUNBANDLINSOLINIT

Call FSUNBANDLINSOLINIT(code, ier)

Description The function FSUNBANDLINSOLINIT can be called for Fortran programs to create a band
SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol band module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSBANDLINSOLINIT

Call FSUNMASSBANDLINSOLINIT(ier)

Description The function FSUNMASSBANDLINSOLINIT can be called for Fortran programs to create a
band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

11.6.4 SUNLinearSolver Band content

The sunlinsol band module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

11.7 The SUNLinearSolver LapackDense implementation

This section describes the sunlinsol implementation for solving dense linear systems with LA-
PACK. The sunlinsol lapackdense module is designed to be used with the corresponding sunma-
trix dense matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackdense module, include the header file
sunlinsol/sunlinsol lapackdense.h. The installed module library to link to is
libsundials sunlinsollapackdense.lib where .lib is typically .so for shared libraries and .a for
static libraries.
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The sunlinsol lapackdense module is a sunlinsol wrapper for the LAPACK dense matrix
factorization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackdense module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackdense module also cannot be compiled when using 64-bit integers
for the sunindextype.!

11.7.1 SUNLinearSolver LapackDense description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

11.7.2 SUNLinearSolver LapackDense functions

The sunlinsol lapackdense module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackDense

Call LS = SUNLinSol LapackDense(y, A);

Description The function SUNLinSol LapackDense creates and allocates memory for a LAPACK-
based, dense SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNLapackDense with idential
input and output arguments is also provided.

The sunlinsol lapackdense module defines dense implementations of all “direct” linear solver
operations listed in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType LapackDense

• SUNLinSolInitialize LapackDense – this does nothing, since all consistency checks are per-
formed at solver creation.
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• SUNLinSolSetup LapackDense – this calls either DGETRF or SGETRF to perform the LU factor-
ization.

• SUNLinSolSolve LapackDense – this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackDense

• SUNLinSolSpace LapackDense – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackDense

11.7.3 SUNLinearSolver LapackDense Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackdense module also
includes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNLAPACKDENSEINIT

Call FSUNLAPACKDENSEINIT(code, ier)

Description The function FSUNLAPACKDENSEINIT can be called for Fortran programs to create a
LAPACK-based dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackdense
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.

FSUNMASSLAPACKDENSEINIT

Call FSUNMASSLAPACKDENSEINIT(ier)

Description The function FSUNMASSLAPACKDENSEINIT can be called for Fortran programs to create
a LAPACK-based, dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

11.7.4 SUNLinearSolver LapackDense content

The sunlinsol lapackdense module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};
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These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

11.8 The SUNLinearSolver LapackBand implementation

This section describes the sunlinsol implementation for solving banded linear systems with LA-
PACK. The sunlinsol lapackband module is designed to be used with the corresponding sunma-
trix band matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackband module, include the header file
sunlinsol/sunlinsol lapackband.h. The installed module library to link to is
libsundials sunlinsollapackband.lib where .lib is typically .so for shared libraries and .a for
static libraries.

The sunlinsol lapackband module is a sunlinsol wrapper for the LAPACK band matrix
factorization and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackband module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackband module also cannot be compiled when using 64-bit integers for
the sunindextype.!

11.8.1 SUNLinearSolver LapackBand description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.!

11.8.2 SUNLinearSolver LapackBand functions

The sunlinsol lapackband module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackBand

Call LS = SUNLinSol LapackBand(y, A);

Description The function SUNLinSol LapackBand creates and allocates memory for a LAPACK-
based, band SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver
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A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNLapackBand with idential
input and output arguments is also provided.

The sunlinsol lapackband module defines band implementations of all “direct” linear solver op-
erations listed in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType LapackBand

• SUNLinSolInitialize LapackBand – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factoriza-
tion.

• SUNLinSolSolve LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackBand

• SUNLinSolSpace LapackBand – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackBand

11.8.3 SUNLinearSolver LapackBand Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackband module also
includes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNLAPACKDENSEINIT

Call FSUNLAPACKBANDINIT(code, ier)

Description The function FSUNLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based band SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackband
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.
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FSUNMASSLAPACKBANDINIT

Call FSUNMASSLAPACKBANDINIT(ier)

Description The function FSUNMASSLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based, band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

11.8.4 SUNLinearSolver LapackBand content

The sunlinsol lapackband module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

11.9 The SUNLinearSolver KLU implementation

This section describes the sunlinsol implementation for solving sparse linear systems with KLU.
The sunlinsol klu module is designed to be used with the corresponding sunmatrix sparse ma-
trix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads).

The header file to include when using this module is sunlinsol/sunlinsol klu.h. The installed
module library to link to is libsundials sunlinsolklu.lib where .lib is typically .so for shared
libraries and .a for static libraries.

The sunlinsol klu module is a sunlinsol wrapper for the klu sparse matrix factorization and
solver library written by Tim Davis [3, 24]. In order to use the sunlinsol klu interface to klu,
it is assumed that klu has been installed on the system prior to installation of sundials, and that
sundials has been configured appropriately to link with klu (see Appendix A for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled
if sundials is configured to have realtype set to either extended or single (see Section 4.2). Since
the klu library supports both 32-bit and 64-bit integers, this interface will be compiled for either of
the available sunindextype options.!

11.9.1 SUNLinearSolver KLU description

The klu library has a symbolic factorization routine that computes the permutation of the linear
system matrix to block triangular form and the permutations that will pre-order the diagonal blocks
(the only ones that need to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural,
or an ordering given by the user). Of these ordering choices, the default value in the sunlinsol klu
module is the COLAMD ordering.
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klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol klu module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate klu “refactor” routine,
followed by estimates of the numerical conditioning using the relevant “rcond”, and if necessary
“condest”, routine(s). If these estimates of the condition number are larger than ε−2/3 (where
ε is the double-precision unit roundoff), then a new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full or
partial refactorization at the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored klu
data structures. We note that in this solve klu operates on the native data arrays for the
right-hand side and solution vectors, without requiring costly data copies.

11.9.2 SUNLinearSolver KLU functions

The sunlinsol klu module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol KLU

Call LS = SUNLinSol KLU(y, A);

Description The function SUNLinSol KLU creates and allocates memory for a KLU-based
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNKLU with idential input and
output arguments is also provided.

F2003 Name FSUNLinSol KLU

The sunlinsol klu module defines implementations of all “direct” linear solver operations listed in
Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType KLU
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• SUNLinSolInitialize KLU – this sets the first factorize flag to 1, forcing both symbolic
and numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup KLU – this performs either a LU factorization or refactorization of the input
matrix.

• SUNLinSolSolve KLU – this calls the appropriate klu solve routine to utilize the LU factors to
solve the linear system.

• SUNLinSolLastFlag KLU

• SUNLinSolSpace KLU – this only returns information for the storage within the solver interface,
i.e. storage for the integers last flag and first factorize. For additional space requirements,
see the klu documentation.

• SUNLinSolFree KLU

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol klu module also defines the following additional user-callable functions.

SUNLinSol KLUReInit

Call retval = SUNLinSol KLUReInit(LS, A, nnz, reinit type);

Description The function SUNLinSol KLUReInit reinitializes memory and flags for a new fac-
torization (symbolic and numeric) to be conducted at the next solver setup call.
This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic
(and numeric factorization).

Arguments LS (SUNLinearSolver) a template for cloning vectors needed within the
solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

nnz (sunindextype) the new number of nonzeros in the matrix

reinit type (int) flag governing the level of reinitialization. The allowed values
are:

• SUNKLU REINIT FULL – The Jacobian matrix will be destroyed
and a new one will be allocated based on the nnz value passed
to this call. New symbolic and numeric factorizations will be
completed at the next solver setup.

• SUNKLU REINIT PARTIAL – Only symbolic and numeric factor-
izations will be completed. It is assumed that the Jacobian
size has not exceeded the size of nnz given in the sparse ma-
trix provided to the original constructor routine (or the previous
SUNLinSol KLUReInit call).

Return value The return values from this function are SUNLS MEM NULL (either S or A are NULL),
SUNLS ILL INPUT (A does not have type SUNMATRIX SPARSE or reinit type is in-
valid), SUNLS MEM FAIL (reallocation of the sparse matrix failed) or SUNLS SUCCESS.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

This routine assumes no other changes to solver use are necessary.
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Deprecated Name For backward compatibility, the wrapper function SUNKLUReInit with idential in-
put and output arguments is also provided.

F2003 Name FSUNLinSol KLUReInit

SUNLinSol KLUSetOrdering

Call retval = SUNLinSol KLUSetOrdering(LS, ordering);

Description This function sets the ordering used by klu for reducing fill in the linear solve.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

ordering (int) flag indicating the reordering algorithm to use, the options are:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNKLUSetOrdering with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol KLUSetOrdering

SUNLinSol KLUGetSymbolic

Call symbolic = SUNLinSol KLUGetSymbolic(LS);

Description This function returns a pointer to the klu symbolic factorization stored in the sunlin-
sol klu content structure.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

Return value The return type from this function is sun klu symbolic.

Notes When sundials is compiled with 32-bit indices (SUNDIALS INDEX SIZE=32),
sun klu symbolic is mapped to the klu type klu symbolic; when sundials is com-
piled with 64-bit indices (SUNDIALS INDEX SIZE=64) this is mapped to the klu type
klu l symbolic.

SUNLinSol KLUGetNumeric

Call numeric = SUNLinSol KLUGetNumeric(LS);

Description This function returns a pointer to the klu numeric factorization stored in the sunlin-
sol klu content structure.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

Return value The return type from this function is sun klu numeric.

Notes When sundials is compiled with 32-bit indices (SUNDIALS INDEX SIZE=32),
sun klu numeric is mapped to the klu type klu numeric; when sundials is com-
piled with 64-bit indices (SUNDIALS INDEX SIZE=64), this is mapped to the klu type
klu l numeric.
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SUNLinSol KLUGetCommon

Call common = SUNLinSol KLUGetCommon(LS);

Description This function returns a pointer to the klu common structure stored within in the
sunlinsol klu content structure.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

Return value The return type from this function is sun klu common.

Notes When sundials is compiled with 32-bit indices (SUNDIALS INDEX SIZE=32),
sun klu common is mapped to the klu type klu common; when sundials is compiled
with 64-bit indices (SUNDIALS INDEX SIZE=64), this is mapped to the klu type
klu l common.

11.9.3 SUNLinearSolver KLU Fortran interfaces

The sunlinsol klu module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol klu mod Fortran module defines interfaces to all sunlinsol klu C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol klu is interfaced
as FSUNLinSol klu.

The Fortran 2003 sunlinsol klu interface module can be accessed with the use statement,
i.e. use fsunlinsol klu mod, and linking to the library libsundials fsunlinsolklu mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol klu mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol klu module also includes a
Fortran-callable function for creating a SUNLinearSolver object.

FSUNKLUINIT

Call FSUNKLUINIT(code, ier)

Description The function FSUNKLUINIT can be called for Fortran programs to create a sunlin-
sol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol klu module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSKLUINIT

Call FSUNMASSKLUINIT(ier)

Description The function FSUNMASSKLUINIT can be called for Fortran programs to create a KLU-
based SUNLinearSolver object for mass matrix linear systems.
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Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol KLUReInit and SUNLinSol KLUSetOrdering routines also support Fortran inter-
faces for the system and mass matrix solvers:

FSUNKLUREINIT

Call FSUNKLUREINIT(code, nnz, reinit type, ier)

Description The function FSUNKLUREINIT can be called for Fortran programs to re-initialize a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).

nnz (sunindextype*) the new number of nonzeros in the matrix

reinit type (int*) flag governing the level of reinitialization. The allowed values are:

1 – The Jacobian matrix will be destroyed and a new one will be allo-
cated based on the nnz value passed to this call. New symbolic and
numeric factorizations will be completed at the next solver setup.

2 – Only symbolic and numeric factorizations will be completed. It is
assumed that the Jacobian size has not exceeded the size of nnz given
in the sparse matrix provided to the original constructor routine (or
the previous SUNLinSol KLUReInit call).

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

FSUNMASSKLUREINIT

Call FSUNMASSKLUREINIT(nnz, reinit type, ier)

Description The function FSUNMASSKLUREINIT can be called for Fortran programs to re-initialize a
sunlinsol klu object for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUREINIT above, except that code is not needed
since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

FSUNKLUSETORDERING

Call FSUNKLUSETORDERING(code, ordering, ier)

Description The function FSUNKLUSETORDERING can be called for Fortran programs to change the
reordering algorithm used by klu.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) flag indication the reordering algorithm to use. Options include:

0 AMD,

1 COLAMD, and
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2 the natural ordering.

The default is 1 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.

FSUNMASSKLUSETORDERING

Call FSUNMASSKLUSETORDERING(ier)

Description The function FSUNMASSKLUSETORDERING can be called for Fortran programs to change
the reordering algorithm used by klu for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUSETORDERING above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.

11.9.4 SUNLinearSolver KLU content

The sunlinsol klu module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_KLU {

int last_flag;

int first_factorize;

sun_klu_symbolic *symbolic;

sun_klu_numeric *numeric;

sun_klu_common common;

sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,

double*, sun_klu_common*);

};

These entries of the content field contain the following information:

last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

symbolic - klu storage structure for symbolic factorization components, with underlying type
klu symbolic or klu l symbolic, depending on whether sundials was installed
with 32-bit versus 64-bit indices, respectively,

numeric - klu storage structure for numeric factorization components, with underlying type
klu numeric or klu l numeric, depending on whether sundials was installed with
32-bit versus 64-bit indices, respectively.

common - storage structure for common klu solver components, with underlying type
klu common or klu l common, depending on whether sundials was installed with
32-bit versus 64-bit indices, respectively,

klu solver – pointer to the appropriate klu solver function (depending on whether it is using
a CSR or CSC sparse matrix, and on whether sundials was installed with 32-bit
or 64-bit indices).
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11.10 The SUNLinearSolver SuperLUDIST implementation

The SuperLU DIST implementation of the sunlinsol module provided with sundials,
sunlinsol superludist, is designed to be used with the corresponding sunmatrix slunrloc ma-
trix type, and one of the serial, threaded or parallel nvector implementations (nvector serial,
nvector openmp, nvector pthreads, nvector parallel, or nvector parhyp).

The header file to include when using this module is sunlinsol/sunlinsol superludist.h. The
installed module library to link to is libsundials sunlinsolsuperludist.lib where .lib is typi-
cally .so for shared libraries and .a for static libraries.

11.10.1 SUNLinearSolver SuperLUDIST description

The sunlinsol superludist module is a sunlinsol adapter for the SuperLU DIST sparse matrix
factorization and solver library written by X. Sherry Li [8, 31, 46, 47]. The package uses a SPMD
parallel programming model and multithreading to enhance efficiency in distributed-memory parallel
environments with multicore nodes and possibly GPU accelerators. It uses MPI for communication,
OpenMP for threading, and cuda for GPU support. In order to use the sunlinsol superludist
interface to SuperLU DIST, it is assumed that SuperLU DIST has been installed on the system
prior to installation of sundials, and that sundials has been configured appropriately to link with
SuperLU DIST (see Appendix A for details). Additionally, the adapter only supports double-precision
calculations, and therefore cannot be compiled if sundials is configured to use single or extended
precision. Moreover, since the SuperLU DIST library may be installed to support either 32-bit or
64-bit integers, it is assumed that the SuperLU DIST library is installed using the same integer size
as sundials.

The SuperLU DIST library provides many options to control how a linear system will be solved.
These options may be set by a user on an instance of the superlu dist options t struct, and
then it may be provided as an argument to the sunlinsol superludist constructor. The sun-
linsol superludist module will respect all options set except for Fact – this option is necessarily
modified by the sunlinsol superludist module in the setup and solve routines.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol superludist module is constructed to perform the
following operations:

• The first time that the “setup” routine is called, it sets the SuperLU DIST option Fact to
DOFACT so that a subsequent call to the “solve” routine will perform a symbolic factorization,
followed by an initial numerical factorization before continuing to solve the system.

• On subsequent calls to the “setup” routine, it sets the SuperLU DIST option Fact to SamePattern
so that a subsequent call to “solve” will perform factorization assuming the same sparsity pattern
as prior, i.e. it will reuse the column permutation vector.

• If “setup” is called prior to the “solve” routine, then the “solve” routine will perform a sym-
bolic factorization, followed by an initial numerical factorization before continuing to the sparse
triangular solves, and, potentially, iterative refinement. If “setup” is not called prior, “solve”
will skip to the triangular solve step. We note that in this solve SuperLU DIST operates on the
native data arrays for the right-hand side and solution vectors, without requiring costly data
copies.

Starting with SuperLU DIST version 6.3.0, some structures were renamed to have a prefix for the !

floating point type. The double precision API functions have the prefix ’d’. To maintain backwards
compatibility with the unprefixed types, SUNDIALS provides macros to these SuperLU DIST types
with an ’x’ prefix that expand to the correct prefix. E.g., the SUNDIALS macro xLUstruct t expands
to dLUstruct t or LUstruct t based on the SuperLU DIST version.
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11.10.2 SUNLinearSolver SuperLUDIST functions

The sunlinsol superludist module defines implementations of all “direct” linear solver operations
listed in Sections 11.1.1-11.1.3:

• SUNLinSolGetType SuperLUDIST

• SUNLinSolInitialize SuperLUDIST – this sets the first factorize flag to 1 and resets the
internal SuperLU DIST statistics variables.

• SUNLinSolSetup SuperLUDIST – this sets the appropriate SuperLU DIST options so that a
subsequent solve will perform a symbolic and numerical factorization before proceeding with
the triangular solves

• SUNLinSolSolve SuperLUDIST – this calls the SuperLU DIST solve routine to perform factor-
ization (if the setup routine was called prior) and then use the LU factors to solve the linear
system.

• SUNLinSolLastFlag SuperLUDIST

• SUNLinSolSpace SuperLUDIST – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the SuperLU DIST documentation.

• SUNLinSolFree SuperLUDIST

In addition, the module sunlinsol superludist provides the following user-callable routines:

SUNLinSol SuperLUDIST

Call LS = SUNLinSol SuperLUDIST(y, A, grid, lu, scaleperm, solve, stat, options);

Description The function SUNLinSol SuperLUDIST creates and allocates memory for a sunlin-
sol superludist object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix slunrloc matrix template for cloning matrices
needed within the solver

grid (gridinfo t*)

lu (LUstruct t*)

scaleperm (ScalePermstruct t*)

solve (SOLVEstruct t*)

stat (SuperLUStat t*)

options (superlu dist options t*)

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the SuperLU DIST library.

This routine will perform consistency checks to ensure that it is called with consis-
tent nvector and sunmatrix implementations. These are currently limited to the
sunmatrix slunrloc matrix type and the nvector serial, nvector parallel,
nvector parhyp, nvector openmp, and nvector pthreads vector types. As ad-
ditional compatible matrix and vector implementations are added to sundials, these
will be included within this compatibility check.

The grid, lu, scaleperm, solve, and options arguments are not checked and are
passed directly to SuperLU DIST routines.

Some struct members of the options argument are modified internally by the sunlin-
sol superludist solver. Specifically the member Fact, is modified in the setup and
solve routines.
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SUNLinSol SuperLUDIST GetBerr

Call realtype berr = SUNLinSol SuperLUDIST GetBerr(LS);

Description The function SUNLinSol SuperLUDIST GetBerr returns the componentwise relative back-
ward error of the computed solution.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value realtype

Notes

SUNLinSol SuperLUDIST GetGridinfo

Call gridinfo t *grid = SUNLinSol SuperLUDIST GetGridinfo(LS);

Description The function SUNLinSol SuperLUDIST GetGridinfo returns the SuperLU DIST struc-
ture that contains the 2D process grid.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value gridinfo t*

Notes

SUNLinSol SuperLUDIST GetLUstruct

Call LUstruct t *lu = SUNLinSol SuperLUDIST GetLUstruct(LS);

Description The function SUNLinSol SuperLUDIST GetLUstruct returns the SuperLU DIST struc-
ture that contains the distributed L and U factors.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value LUstruct t*

Notes

SUNLinSol SuperLUDIST GetSuperLUOptions

Call superlu dist options t *opts = SUNLinSol SuperLUDIST GetSuperLUOptions(LS);

Description The function SUNLinSol SuperLUDIST GetSuperLUOptions returns the SuperLU DIST
structure that contains the options which control how the linear system is factorized
and solved.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value superlu dist options t*

Notes

SUNLinSol SuperLUDIST GetScalePermstruct

Call ScalePermstruct t *sp = SUNLinSol SuperLUDIST GetScalePermstruct(LS);

Description The function SUNLinSol SuperLUDIST GetScalePermstruct returns the SuperLU DIST
structure that contains the vectors that describe the transformations done to the matrix,
A.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value ScalePermstruct t*

Notes
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SUNLinSol SuperLUDIST GetSOLVEstruct

Call SOLVEstruct t *solve = SUNLinSol SuperLUDIST GetSOLVEstruct(LS);

Description The function SUNLinSol SuperLUDIST GetSOLVEstruct returns the SuperLU DIST struc-
ture that contains information for communication during the solution phase.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value SOLVEstruct t*

Notes

SUNLinSol SuperLUDIST GetSuperLUStat

Call SuperLUStat t *stat = SUNLinSol SuperLUDIST GetSuperLUStat(LS);

Description The function SUNLinSol SuperLUDIST GetSuperLUStat returns the SuperLU DIST struc-
ture that stores information about runtime and flop count.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value SuperLUStat t*

Notes

11.10.3 SUNLinearSolver SuperLUDIST content

The sunlinsol superludist module defines the content field of a SUNLinearSolver to be the fol-
lowing structure:

struct _SUNLinearSolverContent_SuperLUDIST {

booleantype first_factorize;

int last_flag;

realtype berr;

gridinfo_t *grid;

xLUstruct_t *lu;

superlu_dist_options_t *options;

xScalePermstruct_t *scaleperm;

xSOLVEstruct_t *solve;

SuperLUStat_t *stat;

sunindextype N;

};

These entries of the content field contain the following information:

first factorize - flag indicating whether the factorization has ever been performed,

last flag - last error return flag from calls to internal routines,

berr - the componentwise relative backward error of the computed solution,

grid - pointer to the SuperLU DIST structure that stores the 2D process grid,

lu - pointer to the SuperLU DIST structure that stores the distributed L and U factors,

options - pointer to SuperLU DIST options structure,

scaleperm - pointer to the SuperLU DIST structure that stores vectors describing the transforma-
tions done to the matrix, A,

solve - pointer to the SuperLU DIST solve structure,

stat - pointer to the SuperLU DIST structure that stores information about runtime and flop count,

N - the number of equations in the system
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11.11 The SUNLinearSolver SuperLUMT implementation

This section describes the sunlinsol implementation for solving sparse linear systems with Su-
perLU MT. The superlumt module is designed to be used with the corresponding sunmatrix sparse
matrix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads). While these are compatible, it is not recommended to
use a threaded vector module with sunlinsol superlumt unless it is the nvector openmp module
and the superlumt library has also been compiled with OpenMP.

The header file to include when using this module is sunlinsol/sunlinsol superlumt.h. The
installed module library to link to is libsundials sunlinsolsuperlumt.lib where .lib is typically
.so for shared libraries and .a for static libraries.

The sunlinsol superlumt module is a sunlinsol wrapper for the superlumt sparse matrix
factorization and solver library written by X. Sherry Li [9, 45, 26]. The package performs matrix fac-
torization using threads to enhance efficiency in shared memory parallel environments. It should be
noted that threads are only used in the factorization step. In order to use the sunlinsol superlumt
interface to superlumt, it is assumed that superlumt has been installed on the system prior to in-
stallation of sundials, and that sundials has been configured appropriately to link with superlumt
(see Appendix A for details). Additionally, this wrapper only supports single- and double-precision
calculations, and therefore cannot be compiled if sundials is configured to have realtype set to
extended (see Section 4.2). Moreover, since the superlumt library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the superlumt library is installed using the same
integer precision as the sundials sunindextype option. !

11.11.1 SUNLinearSolver SuperLUMT description

The superlumt library has a symbolic factorization routine that computes the permutation of the
linear system matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal
degree ordering on AT ∗ A, minimal degree ordering on AT + A, or natural ordering). Of these
ordering choices, the default value in the sunlinsol superlumt module is the COLAMD ordering.

Since the linear systems that arise within the context of sundials calculations will typically have
identical sparsity patterns, the sunlinsol superlumt module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors
the input matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored
superlumt data structures. We note that in this solve superlumt operates on the native data
arrays for the right-hand side and solution vectors, without requiring costly data copies.

11.11.2 SUNLinearSolver SuperLUMT functions

The module sunlinsol superlumt provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SuperLUMT

Call LS = SUNLinSol SuperLUMT(y, A, num threads);

Description The function SUNLinSol SuperLUMT creates and allocates memory for a
SuperLU MT-based SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver



354 Description of the SUNLinearSolver module

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

num threads (int) desired number of threads (OpenMP or Pthreads, depending
on how superlumt was installed) to use during the factorization
steps

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system
size and to assess compatibility with the superlumt library.

This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

The num threads argument is not checked and is passed directly to superlumt
routines.

Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMT with idential in-
put and output arguments is also provided.

The sunlinsol superlumt module defines implementations of all “direct” linear solver operations
listed in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType SuperLUMT

• SUNLinSolInitialize SuperLUMT – this sets the first factorize flag to 1 and resets the
internal superlumt statistics variables.

• SUNLinSolSetup SuperLUMT – this performs either a LU factorization or refactorization of the
input matrix.

• SUNLinSolSolve SuperLUMT – this calls the appropriate superlumt solve routine to utilize the
LU factors to solve the linear system.

• SUNLinSolLastFlag SuperLUMT

• SUNLinSolSpace SuperLUMT – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the superlumt documentation.

• SUNLinSolFree SuperLUMT

The sunlinsol superlumt module also defines the following additional user-callable function.

SUNLinSol SuperLUMTSetOrdering

Call retval = SUNLinSol SuperLUMTSetOrdering(LS, ordering);

Description This function sets the ordering used by superlumt for reducing fill in the linear
solve.

Arguments LS (SUNLinearSolver) the sunlinsol superlumt object

ordering (int) a flag indicating the ordering algorithm to use, the options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices
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The default is 3 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMTSetOrdering with
idential input and output arguments is also provided.

11.11.3 SUNLinearSolver SuperLUMT Fortran interfaces

For solvers that include a Fortran interface module, the sunlinsol superlumt module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSUPERLUMTINIT

Call FSUNSUPERLUMTINIT(code, num threads, ier)

Description The function FSUNSUPERLUMTINIT can be called for Fortran programs to create a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).

num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol superlumt mod-
ule includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSUPERLUMTINIT

Call FSUNMASSSUPERLUMTINIT(num threads, ier)

Description The function FSUNMASSSUPERLUMTINIT can be called for Fortran programs to create a
SuperLU MT-based SUNLinearSolver object for mass matrix linear systems.

Arguments num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol SuperLUMTSetOrdering routine also supports Fortran interfaces for the system and
mass matrix solvers:

FSUNSUPERLUMTSETORDERING

Call FSUNSUPERLUMTSETORDERING(code, ordering, ier)

Description The function FSUNSUPERLUMTSETORDERING can be called for Fortran programs to update
the ordering algorithm in a sunlinsol superlumt object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering

1 minimal degree ordering on ATA
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2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.

FSUNMASSUPERLUMTSETORDERING

Call FSUNMASSUPERLUMTSETORDERING(ordering, ier)

Description The function FSUNMASSUPERLUMTSETORDERING can be called for Fortran programs to
update the ordering algorithm in a sunlinsol superlumt object for mass matrix linear
systems.

Arguments ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.

11.11.4 SUNLinearSolver SuperLUMT content

The sunlinsol superlumt module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SuperLUMT {

int last_flag;

int first_factorize;

SuperMatrix *A, *AC, *L, *U, *B;

Gstat_t *Gstat;

sunindextype *perm_r, *perm_c;

sunindextype N;

int num_threads;

realtype diag_pivot_thresh;

int ordering;

superlumt_options_t *options;

};

These entries of the content field contain the following information:
last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

A, AC, L, U, B - SuperMatrix pointers used in solve,

Gstat - GStat t object used in solve,

perm r, perm c - permutation arrays used in solve,

N - size of the linear system,
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num threads - number of OpenMP/Pthreads threads to use,

diag pivot thresh - threshold on diagonal pivoting,

ordering - flag for which reordering algorithm to use,

options - pointer to superlumt options structure.

11.12 The SUNLinearSolver cuSolverSp batchQR implemen-
tation

The SUNLinearSolver cuSolverSp batchQR implementation of the sunlinsol API is designed to be
used with the SUNMATRIX CUSPARSE matrix, and the nvector cuda vector. The header file to include
when using this module is sunlinsol/sunlinsol cusolversp batchqr.h. The installed library to
link to is libsundials sunlinsolcusolversp.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The SUNLinearSolver cuSolverSp batchQR module is experimental and subject to change. !

11.12.1 SUNLinearSolver cuSolverSp batchQR description

The SUNLinearSolver cuSolverSp batchQR implementation provides an interface to the batched
sparse QR factorization method provided by the NVIDIA cuSOLVER library [6]. The module is
designed for solving block diagonal linear systems of the form

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

xj = bj

where all block matrices Aj share the same sparsisty pattern. The matrix must be the SUNMATRIX CUSPARSE

module.

11.12.2 SUNLinearSolver cuSolverSp batchQR functions

The SUNLinearSolver cuSolverSp batchQR module defines implementations of all “direct” linear
solver operations listed in Sections 11.1.1-11.1.3:

• SUNLinSolGetType cuSolverSp batchQR

• SUNLinSolInitialize cuSolverSp batchQR – this sets the first factorize flag to 1

• SUNLinSolSetup cuSolverSp batchQR – this always copies the relevant sunmatrix sparse
data to the GPU; if this is the first setup it will perform symbolic analysis on the system

• SUNLinSolSolve cuSolverSp batchQR – this calls the cusolverSpXcsrqrsvBatched routine to
perform factorization

• SUNLinSolLastFlag cuSolverSp batchQR

• SUNLinSolFree cuSolverSp batchQR

In addition, the module provides the following user-callable routines:
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SUNLinSol cuSolverSp batchQR

Call LS = SUNLinSol cuSolverSp batchQR(y, A, cusol);

Description The function SUNLinSol cuSolverSp batchQR creates and allocates memory for a sun-
linsol object.

Arguments y (N Vector) a nvector cuda vector for checking compatibility with the
solver

A (SUNMatrix) a sunmatrix sparse matrix for checking compatibility with
the solver

cusol (cusolverHandle t) a valid cuSOLVER handle

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the solver.

This routine will perform consistency checks to ensure that it is called with consis-
tent nvector and sunmatrix implementations. These are currently limited to the
SUNMAT CUSPARSE matrix type and the nvector cuda vector type. As additional
compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

SUNLinSol cuSolverSp batchQR GetDescription

Call SUNLinSol cuSolverSp batchQR GetDescription(LS, &desc);

Description The function SUNLinSol cuSolverSp batchQR GetDescription accesses the string de-
scription of the object (empty by default).

Arguments LS (SUNLinearSolver) a SUNLinSol cuSolverSp batchQR object

desc (char **) the string description of the linear solver

Return value None

SUNLinSol cuSolverSp batchQR SetDescription

Call SUNLinSol cuSolverSp batchQR SetDescription(LS, desc);

Description The function SUNLinSol cuSolverSp batchQR SetDescription sets the string descrip-
tion of the object (empty by default).

Arguments LS (SUNLinearSolver) a SUNLinSol cuSolverSp batchQR object

desc (const char *) the string description of the linear solver

Return value None

SUNLinSol cuSolverSp batchQR GetDeviceSpace

Call SUNLinSol cuSolverSp batchQR GetDeviceSpace(LS, cuSolverInternal, cuSolverWorkspace);

Description The function SUNLinSol cuSolverSp batchQR GetDeviceSpace returns the cuSOLVER
batch QR method internal buffer size, in bytes, in the argument cuSolverInternal and
the cuSOLVER batch QR workspace buffer size, in bytes, in the agrument cuSolverWorkspace.
The size of the internal buffer is proportional to the number of matrix blocks while the
size of the workspace is almost independent of the number of blocks.

Arguments LS (SUNLinearSolver) a SUNLinSol cuSolverSp batchQR object

cuSolverInternal (size t *) output – the size of the cuSOLVER internal buffer in
bytes



11.13 The SUNLinearSolver MagmaDense implementation 359

cuSolverWorkspace (size t *) output – the size of the cuSOLVER workspace buffer
in bytes

Return value None

11.12.3 SUNLinearSolver cuSolverSp batchQR content

The SUNLinearSolver cuSolverSp batchQR module defines the content field of a SUNLinearSolver

to be the following structure:

struct _SUNLinearSolverContent_cuSolverSp_batchQR {

int last_flag; /* last return flag */

booleantype first_factorize; /* is this the first factorization? */

size_t internal_size; /* size of cusolver internal buffer for Q and R */

size_t workspace_size; /* size of cusolver memory block for num. factorization */

cusolverSpHandle_t cusolver_handle; /* cuSolverSp context */

csrqrInfo_t info; /* opaque cusolver data structure */

void* workspace; /* memory block used by cusolver */

const char* desc; /* description of this linear solver */

};

11.13 The SUNLinearSolver MagmaDense implementation

The SUNLinearSolver MagmaDense implementation of the sunlinsol API is designed to be used with
the SUNMATRIX MAGMADENSE matrix, and a GPU-enabled vector. This implementation interfaces to
the MAGMA () linear algebra library and can target NVIDIA’s CUDA programming model or AMD’s
HIP programming model [55].

The header file to include when using this module is sunlinsol/sunlinsol magmadense.h. The
installed library to link to is libsundials sunlinsolmagmadense.lib where .lib is typically .so

for shared libraries and .a for static libraries.

The SUNLinearSolver MagmaDense module is experimental and subject to change. !

11.13.1 SUNLinearSolver MagmaDense description

The SUNLinearSolver MagmaDense implementation provides an interface to the dense LU and dense
batched LU methods in the MAGMA linear algebra library [4]. The batched LU methods are leveraged
when solving block diagonal linear systems of the form

A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

xj = bj .

11.13.2 SUNLinearSolver MagmaDense functions

The SUNLinearSolver MagmaDense module defines implementations of all “direct” linear solver op-
erations listed in Sections 11.1.1-11.1.3:

• SUNLinSolGetType MagmaDense

• SUNLinSolInitialize MagmaDense

• SUNLinSolSetup MagmaDense

• SUNLinSolSolve MagmaDense

https://icl.utk.edu/magma/
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• SUNLinSolLastFlag MagmaDense

• SUNLinSolFree MagmaDense

In addition, the module provides the following user-callable routines:

SUNLinSol MagmaDense

Call LS = SUNLinSol MagmaDense(y, A);

Description The function SUNLinSol MagmaDense creates and allocates memory for a sunlinsol
object.

Arguments y (N Vector) a vector for checking compatibility with the solver

A (SUNMatrix) a SUNMATRIX MAGMADENSE matrix for checking compatibility with the
solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the solver.

SUNLinSol MagmaDense SetAsync

Call SUNLinSol MagmaDense SetAsync(SUNLinearSolver LS, booleantype onoff);

Description The function SUNLinSol MagmaDense SetAsync can be used to toggle the linear solver
between asynchronous and synchronous modes. In asynchronous mode, SUNLinearSolver
operations are asynchronous with respect to the host. In synchronous mode, the host
and GPU device are synchronized prior to the operation returning.

Arguments LS (SUNLinearSolver) a SUNLinSol MagmaDense object

onoff (booleantype) set to 0 for synchronous mode, or 1 for asynchronous mode

Return value None

Notes The default is asynchronous mode.

11.13.3 SUNLinearSolver MagmaDense content

The SUNLinearSolver MagmaDense module defines the content field of a SUNLinearSolver to be the
following structure:

struct _SUNLinearSolverContent_MagmaDense {

int last_flag;

booleantype async;

sunindextype N;

SUNMemory pivots;

SUNMemory pivotsarr;

SUNMemory dpivotsarr;

SUNMemory infoarr;

SUNMemory rhsarr;

SUNMemoryHelper memhelp;

magma_queue_t q;

};
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11.14 The SUNLinearSolver OneMklDense Implementation

The SUNLinearSolver OneMklDense implementation of the sunlinsol class interfaces to the direct
linear solvers from the Intel oneAPI Math Kernel Library (oneMKL) for solving dense systems of block-
diagonal systems with dense blocks. This linear solver is best paired with the SUNMatrix OneMklDense

matrix.

The header file to include when using this class is sunlinsol/sunlinsol onemkldense.h. The
installed library to link to is libsundials sunlinsolonemkldense.lib where .lib is typically .so

for shared libraries and .a for static libraries.

The SUNLinearSolver OneMklDense class is experimental and subject to change. !

11.14.1 SUNLinearSolver OneMklDense Functions

The SUNLinearSolver OneMklDense class defines implementations of all “direct” linear solver oper-
ations listed in Sections 11.1.1-11.1.3:

• SUNLinSolGetType OneMklDense – returns SUNLINEARSOLVER ONEMKLDENSE

• SUNLinSolInitialize OneMklDense

• SUNLinSolSetup OneMklDense

• SUNLinSolSolve OneMklDense

• SUNLinSolLastFlag OneMklDense

• SUNLinSolFree OneMklDense

In addition, the class provides the following user-callable routines:

SUNLinSol OneMklDense

Call LS = SUNLinSol OneMklDense(y, A);

Description The function SUNLinSol OneMklDense creates and allocates memory for a sunlinsol
object.

Arguments y (N Vector) a vector for checking compatibility with the solver

A (SUNMatrix) a SUNMATRIX ONEMKLDENSE matrix for checking compatibility with the
solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the solver.

11.14.2 SUNLinearSolver OneMklDense Usage Notes

The SUNLinearSolver OneMklDense class only supports 64-bit indexing, thus sundials must be built
for 64-bit indexing to use this class.

When using the SUNLinearSolver OneMklDense class with a sundials package (e.g. cvode), the
queue given to matrix is also used for the linear solver.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
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11.15 The SUNLinearSolver SPGMR implementation

This section describes the sunlinsol implementation of the spgmr (Scaled, Preconditioned, Gen-
eralized Minimum Residual [52]) iterative linear solver. The sunlinsol spgmr module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for
increased efficiency.

To access the sunlinsol spgmr module, include the header file sunlinsol/sunlinsol spgmr.h.
We note that the sunlinsol spgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspgmr module library.

11.15.1 SUNLinearSolver SPGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning,
and restarts if those options have been supplied.

11.15.2 SUNLinearSolver SPGMR functions

The sunlinsol spgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPGMR

Call LS = SUNLinSol SPGMR(y, pretype, maxl);

Description The function SUNLinSol SPGMR creates and allocates memory for a spgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result
in the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.
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Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spgmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMR with idential input
and output arguments is also provided.

F2003 Name FSUNLinSol SPGMR

The sunlinsol spgmr module defines implementations of all “iterative” linear solver operations listed
in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType SPGMR

• SUNLinSolInitialize SPGMR

• SUNLinSolSetATimes SPGMR

• SUNLinSolSetPreconditioner SPGMR

• SUNLinSolSetScalingVectors SPGMR

• SUNLinSolSetZeroGuess SPGMR – note the solver assumes a non-zero guess by default and the
zero guess flag is reset to SUNFALSE after each call to SUNLinSolSolve SPGMR.

• SUNLinSolSetup SPGMR

• SUNLinSolSolve SPGMR

• SUNLinSolNumIters SPGMR

• SUNLinSolResNorm SPGMR

• SUNLinSolResid SPGMR

• SUNLinSolLastFlag SPGMR

• SUNLinSolSpace SPGMR

• SUNLinSolFree SPGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spgmr module also defines the following additional user-callable functions.

SUNLinSol SPGMRSetPrecType

Call retval = SUNLinSol SPGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPGMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.
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Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPGMRSetPrecType

SUNLinSol SPGMRSetGSType

Call retval = SUNLinSol SPGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol SPGMRSetGSType

SUNLinSol SPGMRSetMaxRestarts

Call retval = SUNLinSol SPGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPGMRSetMaxRestarts sets the number of GMRES restarts
to allow in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPGMRSetMaxRestarts

SUNLinSolSetInfoFile SPGMR

Call retval = SUNLinSolSetInfoFile SPGMR(LS, info file);

Description The function SUNLinSolSetInfoFile SPGMR sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled
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Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPGMR

SUNLinSolSetPrintLevel SPGMR

Call retval = SUNLinSolSetPrintLevel SPGMR(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPGMR specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPGMR

11.15.3 SUNLinearSolver SPGMR Fortran interfaces

The sunlinsol spgmr module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spgmr mod Fortran module defines interfaces to all sunlinsol spgmr C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPGMR is
interfaced as FSUNLinSol SPGMR.

The Fortran 2003 sunlinsol spgmr interface module can be accessed with the use statement,
i.e. use fsunlinsol spgmr mod, and linking to the library libsundials fsunlinsolspgmr mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol spgmr mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolspgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.
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FSUNSPGMRINIT

Call FSUNSPGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPGMRINIT can be called for Fortran programs to create a sunlin-
sol spgmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPGMRINIT

Call FSUNMASSSPGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPGMRINIT can be called for Fortran programs to create a sun-
linsol spgmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.

The SUNLinSol SPGMRSetPrecType, SUNLinSol SPGMRSetGSType and
SUNLinSol SPGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.

FSUNSPGMRSETGSTYPE

Call FSUNSPGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPGMRSETGSTYPE

Call FSUNMASSSPGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.
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Arguments The arguments are identical to FSUNSPGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNSPGMRSETPRECTYPE

Call FSUNSPGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPGMRSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.

FSUNMASSSPGMRSETPRECTYPE

Call FSUNMASSSPGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.

FSUNSPGMRSETMAXRS

Call FSUNSPGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPGMRSETMAXRS

Call FSUNMASSSPGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

11.15.4 SUNLinearSolver SPGMR content

The sunlinsol spgmr module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_SPGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

booleantype zeroguess;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
maxl - number of GMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of GMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),
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V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
GMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),

vtemp - temporary vector storage.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

11.16 The SUNLinearSolver SPFGMR implementation

This section describes the sunlinsol implementation of the spfgmr (Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [51]) iterative linear solver. The sunlinsol spfgmr module is
designed to be compatible with any nvector implementation that supports a minimal subset of opera-
tions (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for in-
creased efficiency. Unlike the other Krylov iterative linear solvers supplied with sundials, spfgmr is
specifically designed to work with a changing preconditioner (e.g. from an iterative method).

To access the sunlinsol spfgmr module, include the header file sunlinsol/sunlinsol spfgmr.h.
We note that the sunlinsol spfgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspfgmr module library.

11.16.1 SUNLinearSolver SPFGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol spfgmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2

scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )
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• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, precondition-
ing, and restarts if those options have been supplied.

11.16.2 SUNLinearSolver SPFGMR functions

The sunlinsol spfgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPFGMR

Call LS = SUNLinSol SPFGMR(y, pretype, maxl);

Description The function SUNLinSol SPFGMR creates and allocates memory for a spfgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result in the
default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this routine
will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consistent
nvector implementation (i.e. that it supplies the requisite vector operations). If y is
incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left preconditioning
(ida and idas) and others with only right preconditioning (kinsol). While it is possible
to configure a sunlinsol spfgmr object to use any of the preconditioning options with
these solvers, this use mode is not supported and may result in inferior performance.

F2003 Name FSUNLinSol SPFGMR

SUNSPFGMR The sunlinsol spfgmr module defines implementations of all “iterative” linear solver
operations listed in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType SPFGMR

• SUNLinSolInitialize SPFGMR

• SUNLinSolSetATimes SPFGMR

• SUNLinSolSetPreconditioner SPFGMR

• SUNLinSolSetScalingVectors SPFGMR

• SUNLinSolSetZeroGuess SPFGMR – note the solver assumes a non-zero guess by default and the
zero guess flag is reset to SUNFALSE after each call to SUNLinSolSolve SPFGMR.

• SUNLinSolSetup SPFGMR
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• SUNLinSolSolve SPFGMR

• SUNLinSolNumIters SPFGMR

• SUNLinSolResNorm SPFGMR

• SUNLinSolResid SPFGMR

• SUNLinSolLastFlag SPFGMR

• SUNLinSolSpace SPFGMR

• SUNLinSolFree SPFGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spfgmr module also defines the following additional user-callable functions.

SUNLinSol SPFGMRSetPrecType

Call retval = SUNLinSol SPFGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPFGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPFGMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPFGMRSetPrecType

SUNLinSol SPFGMRSetGSType

Call retval = SUNLinSol SPFGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPFGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol SPFGMRSetGSType
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SUNLinSol SPFGMRSetMaxRestarts

Call retval = SUNLinSol SPFGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPFGMRSetMaxRestarts sets the number of GMRES
restarts to allow in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPFGMRSetMaxRestarts

SUNLinSolSetInfoFile SPFGMR

Call retval = SUNLinSolSetInfoFile SPFGMR(LS, info file);

Description The function SUNLinSolSetInfoFile SPFGMR sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPFGMR

SUNLinSolSetPrintLevel SPFGMR

Call retval = SUNLinSolSetPrintLevel SPFGMR(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPFGMR specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid
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Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPFGMR

11.16.3 SUNLinearSolver SPFGMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spfgmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPFGMR

is interfaced as FSUNLinSol SPFGMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol spfgmr mod, and linking to the library libsundials fsunlinsolspfgmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spfgmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspfgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spfgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPFGMRINIT

Call FSUNSPFGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPFGMRINIT can be called for Fortran programs to create a sunlin-
sol spfgmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spfgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPFGMRINIT

Call FSUNMASSSPFGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPFGMRINIT can be called for Fortran programs to create a sun-
linsol spfgmr object for mass matrix linear systems.
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Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

The SUNLinSol SPFGMRSetPrecType, SUNLinSol SPFGMRSetGSType and
SUNLinSol SPFGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.

FSUNSPFGMRSETGSTYPE

Call FSUNSPFGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPFGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPFGMRSETGSTYPE

Call FSUNMASSSPFGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPFGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

FSUNSPFGMRSETPRECTYPE

Call FSUNSPFGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.
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FSUNMASSSPFGMRSETPRECTYPE

Call FSUNMASSSPFGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.

FSUNSPFGMRSETMAXRS

Call FSUNSPFGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPFGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spfgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPFGMRSETMAXRS

Call FSUNMASSSPFGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPFGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spfgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

11.16.4 SUNLinearSolver SPFGMR content

The sunlinsol spfgmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPFGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

booleantype zeroguess;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;
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PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

N_Vector *Z;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
maxl - number of FGMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of FGMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], . . . ,
Z[maxl]. Each zi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
FGMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =
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,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,
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xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),

vtemp - temporary vector storage.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

11.17 The SUNLinearSolver SPBCGS implementation

This section describes the sunlinsol implementation of the spbcgs (Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [56]) iterative linear solver. The sunlinsol spbcgs module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VDiv, and N VDestroy). Unlike the
spgmr and spfgmr algorithms, spbcgs requires a fixed amount of memory that does not increase
with the number of allowed iterations.

To access the sunlinsol spbcgs module, include the header file sunlinsol/sunlinsol spbcgs.h.
We note that the sunlinsol spbcgs module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspbcgs module library.

11.17.1 SUNLinearSolver SPBCGS description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spbcgs
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the spbcgs iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

11.17.2 SUNLinearSolver SPBCGS functions

The sunlinsol spbcgs module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPBCGS

Call LS = SUNLinSol SPBCGS(y, pretype, maxl);

Description The function SUNLinSol SPBCGS creates and allocates memory for a spbcgs
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)
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• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spbcgs object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

With PREC RIGHT or PREC BOTH the initial guess must be zero (use SUNLinSolSetZeroGuess
to indicate the initial guess is zero).

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGS with idential input
and output arguments is also provided.

F2003 Name FSUNLinSol SPBCGS

The sunlinsol spbcgs module defines implementations of all “iterative” linear solver operations
listed in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType SPBCGS

• SUNLinSolInitialize SPBCGS

• SUNLinSolSetATimes SPBCGS

• SUNLinSolSetPreconditioner SPBCGS

• SUNLinSolSetScalingVectors SPBCGS

• SUNLinSolSetZeroGuess SPBCGS – note the solver assumes a non-zero guess by default and the
zero guess flag is reset to SUNFALSE after each call to SUNLinSolSolve SPBCGS.

• SUNLinSolSetup SPBCGS

• SUNLinSolSolve SPBCGS

• SUNLinSolNumIters SPBCGS

• SUNLinSolResNorm SPBCGS

• SUNLinSolResid SPBCGS

• SUNLinSolLastFlag SPBCGS

• SUNLinSolSpace SPBCGS

• SUNLinSolFree SPBCGS

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spbcgs module also defines the following additional user-callable functions.
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SUNLinSol SPBCGSSetPrecType

Call retval = SUNLinSol SPBCGSSetPrecType(LS, pretype);

Description The function SUNLinSol SPBCGSSetPrecType updates the type of preconditioning
to use in the sunlinsol spbcgs object.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPBCGS.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPBCGSSetPrecType

SUNLinSol SPBCGSSetMaxl

Call retval = SUNLinSol SPBCGSSetMaxl(LS, maxl);

Description The function SUNLinSol SPBCGSSetMaxl updates the number of linear solver iter-
ations to allow.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

maxl (int) flag indicating the number of iterations to allow. Values ≤ 0 will result
in the default value (5).

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetMaxl with idential
input and output arguments is also provided.

F2003 Name FSUNLinSol SPBCGSSetMaxl

SUNLinSolSetInfoFile SPBCGS

Call retval = SUNLinSolSetInfoFile SPBCGS(LS, info file);

Description The function SUNLinSolSetInfoFile SPBCGS sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPBCGS
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SUNLinSolSetPrintLevel SPBCGS

Call retval = SUNLinSolSetPrintLevel SPBCGS(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPBCGS specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPBCGS

11.17.3 SUNLinearSolver SPBCGS Fortran interfaces

The sunlinsol spbcgs module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spbcgs mod Fortran module defines interfaces to all sunlinsol spbcgs C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPBCGS

is interfaced as FSUNLinSol SPBCGS.
The Fortran 2003 sunlinsol spbcgs interface module can be accessed with the use statement,

i.e. use fsunlinsol spbcgs mod, and linking to the library libsundials fsunlinsolspbcgs mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spbcgs mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspbcgs mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spbcgs module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPBCGSINIT

Call FSUNSPBCGSINIT(code, pretype, maxl, ier)

Description The function FSUNSPBCGSINIT can be called for Fortran programs to create a sunlin-
sol spbcgs object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).



11.17 The SUNLinearSolver SPBCGS implementation 381

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spbcgs module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPBCGSINIT

Call FSUNMASSSPBCGSINIT(pretype, maxl, ier)

Description The function FSUNMASSSPBCGSINIT can be called for Fortran programs to create a sun-
linsol spbcgs object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.

The SUNLinSol SPBCGSSetPrecType and SUNLinSol SPBCGSSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.

FSUNSPBCGSSETPRECTYPE

Call FSUNSPBCGSSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.

FSUNMASSSPBCGSSETPRECTYPE

Call FSUNMASSSPBCGSSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.
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FSUNSPBCGSSETMAXL

Call FSUNSPBCGSSETMAXL(code, maxl, ier)

Description The function FSUNSPBCGSSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.

FSUNMASSSPBCGSSETMAXL

Call FSUNMASSSPBCGSSETMAXL(maxl, ier)

Description The function FSUNMASSSPBCGSSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.

11.17.4 SUNLinearSolver SPBCGS content

The sunlinsol spbcgs module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPBCGS {

int maxl;

int pretype;

booleantype zeroguess;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector r;

N_Vector r_star;

N_Vector p;

N_Vector q;

N_Vector u;

N_Vector Ap;

N_Vector vtemp;

int print_level;

FILE* info_file;

};
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These entries of the content field contain the following information:
maxl - number of spbcgs iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a nvector which holds the current scaled, preconditioned linear system residual,

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

p, q, u, Ap, vtemp - nvectors used for workspace by the spbcgs algorithm.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

11.18 The SUNLinearSolver SPTFQMR implementation

This section describes the sunlinsol implementation of the sptfqmr (Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [30]) iterative linear solver. The sunlinsol sptfqmr mod-
ule is designed to be compatible with any nvector implementation that supports a minimal sub-
set of operations (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and
N VDestroy). Unlike the spgmr and spfgmr algorithms, sptfqmr requires a fixed amount of memory
that does not increase with the number of allowed iterations.

To access the sunlinsol sptfqmr module, include the header file
sunlinsol/sunlinsol sptfqmr.h. We note that the sunlinsol sptfqmr module is accessible from
sundials packages without separately linking to the libsundials sunlinsolsptfqmr module library.

11.18.1 SUNLinearSolver SPTFQMR description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol sptfqmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and
s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.
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11.18.2 SUNLinearSolver SPTFQMR functions

The sunlinsol sptfqmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPTFQMR

Call LS = SUNLinSol SPTFQMR(y, pretype, maxl);

Description The function SUNLinSol SPTFQMR creates and allocates memory for a sptfqmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol sptfqmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

With PREC RIGHT or PREC BOTH the initial guess must be zero (use SUNLinSolSetZeroGuess
to indicate the initial guess is zero).

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMR with idential input
and output arguments is also provided.

F2003 Name FSUNLinSol SPTFQMR

The sunlinsol sptfqmr module defines implementations of all “iterative” linear solver operations
listed in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType SPTFQMR

• SUNLinSolInitialize SPTFQMR

• SUNLinSolSetATimes SPTFQMR

• SUNLinSolSetPreconditioner SPTFQMR

• SUNLinSolSetScalingVectors SPTFQMR

• SUNLinSolSetZeroGuess SPTFQMR – note the solver assumes a non-zero guess by default and
the zero guess flag is reset to SUNFALSE after each call to SUNLinSolSolve SPTFQMR.

• SUNLinSolSetup SPTFQMR

• SUNLinSolSolve SPTFQMR
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• SUNLinSolNumIters SPTFQMR

• SUNLinSolResNorm SPTFQMR

• SUNLinSolResid SPTFQMR

• SUNLinSolLastFlag SPTFQMR

• SUNLinSolSpace SPTFQMR

• SUNLinSolFree SPTFQMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol sptfqmr module also defines the following additional user-callable functions.

SUNLinSol SPTFQMRSetPrecType

Call retval = SUNLinSol SPTFQMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPTFQMRSetPrecType updates the type of preconditioning
to use in the sunlinsol sptfqmr object.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPTFQMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPTFQMRSetPrecType

SUNLinSol SPTFQMRSetMaxl

Call retval = SUNLinSol SPTFQMRSetMaxl(LS, maxl);

Description The function SUNLinSol SPTFQMRSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result in
the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

F2003 Name FSUNLinSol SPTFQMRSetMaxl

SUNSPTFQMRSetMaxl

SUNLinSolSetInfoFile SPTFQMR

Call retval = SUNLinSolSetInfoFile SPTFQMR(LS, info file);

Description The function SUNLinSolSetInfoFile SPTFQMR sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is
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• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPTFQMR

SUNLinSolSetPrintLevel SPTFQMR

Call retval = SUNLinSolSetPrintLevel SPTFQMR(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPTFQMR specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPTFQMR

11.18.3 SUNLinearSolver SPTFQMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol sptfqmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPTFQMR

is interfaced as FSUNLinSol SPTFQMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol sptfqmr mod, and linking to the library libsundials fsunlinsolsptfqmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol sptfqmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolsptfqmr mod library.
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FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol sptfqmr module also in-
cludes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPTFQMRINIT

Call FSUNSPTFQMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPTFQMRINIT can be called for Fortran programs to create a sunlin-
sol sptfqmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol sptfqmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPTFQMRINIT

Call FSUNMASSSPTFQMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPTFQMRINIT can be called for Fortran programs to create a
sunlinsol sptfqmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

The SUNLinSol SPTFQMRSetPrecType and SUNLinSol SPTFQMRSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.

FSUNSPTFQMRSETPRECTYPE

Call FSUNSPTFQMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPTFQMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.
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FSUNMASSSPTFQMRSETPRECTYPE

Call FSUNMASSSPTFQMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPTFQMRSETPRECTYPE can be called for Fortran programs to
change the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPTFQMRSETPRECTYPE above, except that code is
not needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.

FSUNSPTFQMRSETMAXL

Call FSUNSPTFQMRSETMAXL(code, maxl, ier)

Description The function FSUNSPTFQMRSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.

FSUNMASSSPTFQMRSETMAXL

Call FSUNMASSSPTFQMRSETMAXL(maxl, ier)

Description The function FSUNMASSSPTFQMRSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPTFQMRSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.

11.18.4 SUNLinearSolver SPTFQMR content

The sunlinsol sptfqmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPTFQMR {

int maxl;

int pretype;

booleantype zeroguess;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;
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N_Vector s1;

N_Vector s2;

N_Vector r_star;

N_Vector q;

N_Vector d;

N_Vector v;

N_Vector p;

N_Vector *r;

N_Vector u;

N_Vector vtemp1;

N_Vector vtemp2;

N_Vector vtemp3;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:

maxl - number of TFQMR iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

q, d, v, p, u - nvectors used for workspace by the SPTFQMR algorithm,

r - array of two nvectors used for workspace within the SPTFQMR algorithm,

vtemp1, vtemp2, vtemp3 - temporary vector storage.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

11.19 The SUNLinearSolver PCG implementation

This section describes the sunlinsol implementaiton of the pcg (Preconditioned Conjugate Gradient
[32]) iterative linear solver. The sunlinsol pcg module is designed to be compatible with any nvec-
tor implementation that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, and N VDestroy). Unlike the spgmr and spfgmr algorithms, pcg requires
a fixed amount of memory that does not increase with the number of allowed iterations.

To access the sunlinsol pcg module, include the header file
sunlinsol/sunlinsol pcg.h. We note that the sunlinsol pcg module is accessible from sundials
packages without separately linking to the libsundials sunlinsolpcg module library.
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11.19.1 SUNLinearSolver PCG description

Unlike all of the other iterative linear solvers supplied with sundials, pcg should only be used on
symmetric linear systems (e.g. mass matrix linear systems encountered in arkode). As a result, the
explanation of the role of scaling and preconditioning matrices given in general must be modified in
this scenario. The pcg algorithm solves a linear system Ax = b where A is a symmetric (AT = A),
real-valued matrix. Preconditioning is allowed, and is applied in a symmetric fashion on both the
right and left. Scaling is also allowed and is applied symmetrically. We denote the preconditioner and
scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators
are required. The diagonal of the matrix S is held in a single nvector, supplied by the user.

In this notation, pcg applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (11.4)

where

Ã = SP−1AP−1S,

b̃ = SP−1b, (11.5)

x̃ = S−1Px.

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless com-
ponents.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol pcg
to supply the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the pcg iteration is performed. This will include scaling and preconditioning
if those options have been supplied.
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11.19.2 SUNLinearSolver PCG functions

The sunlinsol pcg module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol PCG

Call LS = SUNLinSol PCG(y, pretype, maxl);

Description The function SUNLinSol PCG creates and allocates memory for a pcg SUNLinearSolver

object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating whether to use preconditioning. Since the pcg al-
gorithm is designed to only support symmetric preconditioning, then any
of the pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3)
will result in use of the symmetric preconditioner; any other integer input
will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow; values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

Although some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol), pcg
should only be used with these packages when the linear systems are known to be
symmetric. Since the scaling of matrix rows and columns must be identical in a
symmetric matrix, symmetric preconditioning should work appropriately even for
packages designed with one-sided preconditioning in mind.

Deprecated Name For backward compatibility, the wrapper function SUNPCG with idential input and
output arguments is also provided.

F2003 Name FSUNLinSol PCG

The sunlinsol pcg module defines implementations of all “iterative” linear solver operations listed
in Sections 11.1.1 – 11.1.3:

• SUNLinSolGetType PCG

• SUNLinSolInitialize PCG

• SUNLinSolSetATimes PCG

• SUNLinSolSetPreconditioner PCG

• SUNLinSolSetScalingVectors PCG – since pcg only supports symmetric scaling, the second
nvector argument to this function is ignored

• SUNLinSolSetZeroGuess PCG – note the solver assumes a non-zero guess by default and the
zero guess flag is reset to SUNFALSE after each call to SUNLinSolSolve PCG.

• SUNLinSolSetup PCG

• SUNLinSolSolve PCG

• SUNLinSolNumIters PCG

• SUNLinSolResNorm PCG
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• SUNLinSolResid PCG

• SUNLinSolLastFlag PCG

• SUNLinSolSpace PCG

• SUNLinSolFree PCG

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol pcg module also defines the following additional user-callable functions.

SUNLinSol PCGSetPrecType

Call retval = SUNLinSol PCGSetPrecType(LS, pretype);

Description The function SUNLinSol PCGSetPrecType updates the flag indicating use of pre-
conditioning in the sunlinsol pcg object.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

pretype (int) flag indicating use of preconditioning, allowed values match those
discussed in SUNLinSol PCG.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetPrecType with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol PCGSetPrecType

SUNLinSol PCGSetMaxl

Call retval = SUNLinSol PCGSetMaxl(LS, maxl);

Description The function SUNLinSol PCGSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result
in the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetMaxl with idential
input and output arguments is also provided.

F2003 Name FSUNLinSol PCGSetMaxl

SUNLinSolSetInfoFile PCG

Call retval = SUNLinSolSetInfoFile PCG(LS, info file);

Description The function SUNLinSolSetInfoFile PCG sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL
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• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile PCG

SUNLinSolSetPrintLevel PCG

Call retval = SUNLinSolSetPrintLevel PCG(NLS, print level);

Description The function SUNLinSolSetPrintLevel PCG specifies the level of verbosity of the out-
put.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel PCG

11.19.3 SUNLinearSolver PCG Fortran interfaces

The sunlinsol pcg module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol pcg mod Fortran module defines interfaces to all sunlinsol pcg C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol PCG is interfaced
as FSUNLinSol PCG.

The Fortran 2003 sunlinsol pcg interface module can be accessed with the use statement,
i.e. use fsunlinsol pcg mod, and linking to the library libsundials fsunlinsolpcg mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol pcg mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolpcg mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol pcg module also includes a
Fortran-callable function for creating a SUNLinearSolver object.
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FSUNPCGINIT

Call FSUNPCGINIT(code, pretype, maxl, ier)

Description The function FSUNPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol pcg module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSPCGINIT

Call FSUNMASSPCGINIT(pretype, maxl, ier)

Description The function FSUNMASSPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

The SUNLinSol PCGSetPrecType and SUNLinSol PCGSetMaxl routines also support Fortran interfaces
for the system and mass matrix solvers.

FSUNPCGSETPRECTYPE

Call FSUNPCGSETPRECTYPE(code, pretype, ier)

Description The function FSUNPCGSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNMASSPCGSETPRECTYPE

Call FSUNMASSPCGSETPRECTYPE(pretype, ier)

Description The function FSUNMASSPCGSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNPCGSETMAXL

Call FSUNPCGSETMAXL(code, maxl, ier)

Description The function FSUNPCGSETMAXL can be called for Fortran programs to change the maxi-
mum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

FSUNMASSPCGSETMAXL

Call FSUNMASSPCGSETMAXL(maxl, ier)

Description The function FSUNMASSPCGSETMAXL can be called for Fortran programs to change the
type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETMAXL above, except that code is not needed
since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

11.19.4 SUNLinearSolver PCG content

The sunlinsol pcg module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_PCG {

int maxl;

int pretype;

booleantype zeroguess;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s;

N_Vector r;

N_Vector p;

N_Vector z;

N_Vector Ap;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
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maxl - number of pcg iterations to allow (default is 5),

pretype - flag for use of preconditioning (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a nvector which holds the preconditioned linear system residual,

p, z, Ap - nvectors used for workspace by the pcg algorithm.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

11.20 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make
use of the functions in test sunlinsol.c. These example functions show simple usage of the
SUNLinearSolver family of functions. The inputs to the examples depend on the linear solver type,
and are output to stdout if the example is run without the appropriate number of command-line
arguments.
The following is a list of the example functions in test sunlinsol.c:

• Test SUNLinSolGetType: Verifies the returned solver type against the value that should be
returned.

• Test SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns
successfully.

• Test SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test SUNLinSolSolve: Given a sunmatrix object A, nvector objects x and b (where Ax = b)
and a desired solution tolerance tol, this routine clones x into a new vector y, calls
SUNLinSolSolve to fill y as the solution to Ay = b (to the input tolerance), verifies that each
entry in x and y match to within 10*tol, and overwrites x with y prior to returning (in case
the calling routine would like to investigate further).

• Test SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

• Test SUNLinSolSetPreconditioner (iterative solvers only): Verifies that
SUNLinSolSetPreconditioner can be called and returns successfully.

• Test SUNLinSolSetScalingVectors (iterative solvers only): Verifies that
SUNLinSolSetScalingVectors can be called and returns successfully.

• Test SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the
result to stdout.

• Test SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be
called, and outputs the result to stdout.
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• Test SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

• Test SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative
linear solvers, Test SUNLinSolInitialize must be called before Test SUNLinSolSetup, which must
be called before Test SUNLinSolSolve. Additionally, for iterative linear solvers
Test SUNLinSolSetATimes, Test SUNLinSolSetPreconditioner and
Test SUNLinSolSetScalingVectors should be called before Test SUNLinSolInitialize; similarly
Test SUNLinSolNumIters, Test SUNLinSolResNorm and Test SUNLinSolResid should be called after
Test SUNLinSolSolve. These are called in the appropriate order in all of the example problems.





Chapter 12

Description of the
SUNNonlinearSolver module

sundials time integration packages are written in terms of generic nonlinear solver operations de-
fined by the sunnonlinsol API and implemented by a particular sunnonlinsol module of type
SUNNonlinearSolver. Users can supply their own sunnonlinsol module, or use one of the modules
provided with sundials. Depending on the package, nonlinear solver modules can either target system
presented in a rootfinding (F (y) = 0) or fixed-point (G(y) = y) formulation. For more information
on the formulation of the nonlinear system(s) see section 12.2.

The time integrators in sundials specify a default nonlinear solver module and as such this chapter
is intended for users that wish to use a non-default nonlinear solver module or would like to provide
their own nonlinear solver implementation. Users interested in using a non-default solver module
may skip the description of the sunnonlinsol API in section 12.1 and proceeded to the subsequent
sections in this chapter that describe the sunnonlinsol modules provided with sundials.

For users interested in providing their own sunnonlinsol module, the following section presents
the sunnonlinsol API and its implementation beginning with the definition of sunnonlinsol func-
tions in sections 12.1.1 – 12.1.3. This is followed by the definition of functions supplied to a nonlinear
solver implementation in section 12.1.4. A table of nonlinear solver return codes is given in section
12.1.5. The SUNNonlinearSolver type and the generic sunnonlinsol module are defined in section
12.1.6. Section 12.1.7 describes how sunnonlinsol models interface with sundials integrators pro-
viding sensitivity analysis capabilities (cvodes and idas). Finally, section 12.1.8 lists the requirements
for supplying a custom sunnonlinsol module. Users wishing to supply their own sunnonlinsol
module are encouraged to use the sunnonlinsol implementations provided with sundials as a tem-
plate for supplying custom nonlinear solver modules.

12.1 The SUNNonlinearSolver API

The sunnonlinsol API defines several nonlinear solver operations that enable sundials integrators
to utilize any sunnonlinsol implementation that provides the required functions. These functions
can be divided into three categories. The first are the core nonlinear solver functions. The second
group of functions consists of set routines to supply the nonlinear solver with functions provided
by the sundials time integrators and to modify solver parameters. The final group consists of get
routines for retrieving nonlinear solver statistics. All of these functions are defined in the header file
sundials/sundials nonlinearsolver.h.

12.1.1 SUNNonlinearSolver core functions

The core nonlinear solver functions consist of two required functions to get the nonlinear solver type
(SUNNonlinsSolGetType) and solve the nonlinear system (SUNNonlinSolSolve). The remaining three
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functions for nonlinear solver initialization (SUNNonlinSolInitialization), setup
(SUNNonlinSolSetup), and destruction (SUNNonlinSolFree) are optional.

SUNNonlinSolGetType

Call type = SUNNonlinSolGetType(NLS);

Description The required function SUNNonlinSolGetType returns nonlinear solver type.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

Return value The return value type (of type int) will be one of the following:

SUNNONLINEARSOLVER ROOTFIND 0, the sunnonlinsol module solves F (y) = 0.

SUNNONLINEARSOLVER FIXEDPOINT 1, the sunnonlinsol module solves G(y) = y.

F2003 Name FSUNNonlinSolGetType

SUNNonlinSolInitialize

Call retval = SUNNonlinSolInitialize(NLS);

Description The optional function SUNNonlinSolInitialize performs nonlinear solver initialization
and may perform any necessary memory allocations.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

Return value The return value retval (of type int) is zero for a successful call and a negative value
for a failure.

Notes It is assumed all solver-specific options have been set prior to calling
SUNNonlinSolInitialize. sunnonlinsol implementations that do not require initial-
ization may set this operation to NULL.

F2003 Name FSUNNonlinSolInitialize

SUNNonlinSolSetup

Call retval = SUNNonlinSolSetup(NLS, y, mem);

Description The optional function SUNNonlinSolSetup performs any solver setup needed for a non-
linear solve.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

y (N Vector) the initial iteration passed to the nonlinear solver.

mem (void *) the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successful call and a negative value
for a failure.

Notes sundials integrators call SUNonlinSolSetup before each step attempt. sunnonlinsol
implementations that do not require setup may set this operation to NULL.

F2003 Name FSUNNonlinSolSetup

SUNNonlinSolSolve

Call retval = SUNNonlinSolSolve(NLS, y0, ycor, w, tol, callLSetup, mem);

Description The required function SUNNonlinSolSolve solves the nonlinear system F (y) = 0 or
G(y) = y.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

y0 (N Vector) the predicted value for the new solution state. This must re-
main unchanged throughout the solution process. See section 12.2 for more
detail on the nonlinear system formulation.
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ycor (N Vector) on input the initial guess for the correction to the predicted
state (zero) and on output the final correction to the predicted state. See
section 12.2 for more detail on the nonlinear system formulation.

w (N Vector) the solution error weight vector used for computing weighted
error norms.

tol (realtype) the requested solution tolerance in the weighted root-mean-
squared norm.

callLSetup (booleantype) a flag indicating that the integrator recommends for the
linear solver setup function to be called.

mem (void *) the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error (i.e., the solve failed and the integrator should reduce the step size
and reattempt the step), and a negative value for an unrecoverable error (i.e., the solve
failed and the integrator should halt and return an error to the user).

F2003 Name FSUNNonlinSolSolve

SUNNonlinSolFree

Call retval = SUNNonlinSolFree(NLS);

Description The optional function SUNNonlinSolFree frees any memory allocated by the nonlinear
solver.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure. sunnonlinsol implementations that do not allocate data may set
this operation to NULL.

F2003 Name FSUNNonlinSolFree

12.1.2 SUNNonlinearSolver set functions

The following set functions are used to supply nonlinear solver modules with functions defined by the
sundials integrators and to modify solver parameters. Only the routine for setting the nonlinear
system defining function (SUNNonlinSolSetSysFn is required. All other set functions are optional.

SUNNonlinSolSetSysFn

Call retval = SUNNonlinSolSetSysFn(NLS, SysFn);

Description The required function SUNNonlinSolSetSysFn is used to provide the nonlinear solver
with the function defining the nonlinear system. This is the function F (y) in F (y) = 0
for SUNNONLINEARSOLVER ROOTFIND modules or G(y) in G(y) = y for
SUNNONLINEARSOLVER FIXEDPOINT modules.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

SysFn (SUNNonlinSolSysFn) the function defining the nonlinear system. See section
12.1.4 for the definition of SUNNonlinSolSysFn.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

F2003 Name FSUNNonlinSolSetSysFn
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SUNNonlinSolSetLSetupFn

Call retval = SUNNonlinSolSetLSetupFn(NLS, LSetupFn);

Description The optional function SUNNonlinSolLSetupFn is called by sundials integrators to
provide the nonlinear solver with access to its linear solver setup function.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

LSetupFn (SUNNonlinSolLSetupFn) a wrapper function to the sundials integrator’s
linear solver setup function. See section 12.1.4 for the definition of
SUNNonlinLSetupFn.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes The SUNNonlinLSetupFn function sets up the linear system Ax = b where A = ∂F
∂y is

the linearization of the nonlinear residual function F (y) = 0 (when using sunlinsol
direct linear solvers) or calls the user-defined preconditioner setup function (when using
sunlinsol iterative linear solvers). sunnonlinsol implementations that do not require
solving this system, do not utilize sunlinsol linear solvers, or use sunlinsol linear
solvers that do not require setup may set this operation to NULL.

F2003 Name FSUNNonlinSolSetLSetupFn

SUNNonlinSolSetLSolveFn

Call retval = SUNNonlinSolSetLSolveFn(NLS, LSolveFn);

Description The optional function SUNNonlinSolSetLSolveFn is called by sundials integrators to
provide the nonlinear solver with access to its linear solver solve function.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

LSolveFn (SUNNonlinSolLSolveFn) a wrapper function to the sundials integrator’s
linear solver solve function. See section 12.1.4 for the definition of
SUNNonlinSolLSolveFn.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes The SUNNonlinLSolveFn function solves the linear system Ax = b where A = ∂F
∂y is the

linearization of the nonlinear residual function F (y) = 0. sunnonlinsol implementa-
tions that do not require solving this system or do not use sunlinsol linear solvers may
set this operation to NULL.

F2003 Name FSUNNonlinSolSetLSolveFn

SUNNonlinSolSetConvTestFn

Call retval = SUNNonlinSolSetConvTestFn(NLS, CTestFn, ctest data);

Description The optional function SUNNonlinSolSetConvTestFn is used to provide the nonlinear
solver with a function for determining if the nonlinear solver iteration has converged.
This is typically called by sundials integrators to define their nonlinear convergence
criteria, but may be replaced by the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

CTestFn (SUNNonlineSolConvTestFn) a sundials integrator’s nonlinear solver con-
vergence test function. See section 12.1.4 for the definition of
SUNNonlinSolConvTestFn.

ctest data (void*) is a data pointer passed to CTestFn every time it is called.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.
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Notes sunnonlinsol implementations utilizing their own convergence test criteria may set
this function to NULL.

F2003 Name FSUNNonlinSolSetConvTestFn

SUNNonlinSolSetMaxIters

Call retval = SUNNonlinSolSetMaxIters(NLS, maxiters);

Description The optional function SUNNonlinSolSetMaxIters sets the maximum number of non-
linear solver iterations. This is typically called by sundials integrators to define their
default iteration limit, but may be adjusted by the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

maxiters (int) the maximum number of nonlinear iterations.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure (e.g., maxiters < 1).

F2003 Name FSUNNonlinSolSetMaxIters

12.1.3 SUNNonlinearSolver get functions

The following get functions allow sundials integrators to retrieve nonlinear solver statistics. The
routines to get number of iterations in the most recent solve (SUNNonlinSolGetNumIters) and number
of convergence failures (SUNNonlinSolGetNumConvFails) are optional. The routine to get the current
nonlinear solver iteration (SUNNonlinSolGetCurIter) is required when using the convergence test
provided by the sundials integrator or by the arkode and cvode linear solver interfaces. Otherwise,
SUNNonlinSolGetCurIter is optional.

SUNNonlinSolGetNumIters

Call retval = SUNNonlinSolGetNumIters(NLS, numiters);

Description The optional function SUNNonlinSolGetNumIters returns the number of nonlinear
solver iterations in the most recent solve. This is typically called by the sundials
integrator to store the nonlinear solver statistics, but may also be called by the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

numiters (long int*) the total number of nonlinear solver iterations.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

F2003 Name FSUNNonlinSolGetNumIters

SUNNonlinSolGetCurIter

Call retval = SUNNonlinSolGetCurIter(NLS, iter);

Description The function SUNNonlinSolGetCurIter returns the iteration index of the current non-
linear solve. This function is required when using sundials integrator-provided conver-
gence tests or when using a sunlinsol spils linear solver; otherwise it is optional.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

iter (int*) the nonlinear solver iteration in the current solve starting from zero.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

F2003 Name FSUNNonlinSolGetCurIter
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SUNNonlinSolGetNumConvFails

Call retval = SUNNonlinSolGetNumConvFails(NLS, nconvfails);

Description The optional function SUNNonlinSolGetNumConvFails returns the number of nonlinear
solver convergence failures in the most recent solve. This is typically called by the
sundials integrator to store the nonlinear solver statistics, but may also be called by
the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

nconvfails (long int*) the total number of nonlinear solver convergence failures.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

F2003 Name FSUNNonlinSolGetNumConvFails

12.1.4 Functions provided by SUNDIALS integrators

To interface with sunnonlinsol modules, the sundials integrators supply a variety of routines
for evaluating the nonlinear system, calling the sunlinsol setup and solve functions, and testing
the nonlinear iteration for convergence. These integrator-provided routines translate between the
user-supplied ODE or DAE systems and the generic interfaces to the nonlinear or linear systems of
equations that result in their solution. The types for functions provided to a sunnonlinsol module
are defined in the header file sundials/sundials nonlinearsolver.h, and are described below.

SUNNonlinSolSysFn

Definition typedef int (*SUNNonlinSolSysFn)(N Vector ycor, N Vector F, void* mem);

Purpose These functions evaluate the nonlinear system F (y) for SUNNONLINEARSOLVER ROOTFIND

type modules or G(y) for SUNNONLINEARSOLVER FIXEDPOINT type modules. Memory
for F must by be allocated prior to calling this function. The vector ycor will be left
unchanged.

Arguments ycor is the current correction to the predicted state at which the nonlinear system
should be evaluated. See section 12.2 for more detail on the nonlinear system
formulation.

F is the output vector containing F (y) or G(y), depending on the solver type.

mem is the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error, and a negative value for an unrecoverable error.

Notes As discussed in section 12.2, sundials integrators formulate nonlinear systems as a
function of the correction to the predicted solution. On each call to the nonlinear
system function the integrator will compute and store the current solution based on the
input correction. Additionally, the residual will store the value of the ODE right-hand
side function or DAE residual used in computing the nonlinear system residual. These
stored values are then directly used in the integrator-supplied linear solver setup and
solve functions as applicable.

SUNNonlinSolLSetupFn

Definition typedef int (*SUNNonlinSolLSetupFn)(booleantype jbad, booleantype* jcur,

void* mem);

Purpose These functions are wrappers to the sundials integrator’s function for setting up linear
solves with sunlinsol modules.

Arguments jbad is an input indicating whether the nonlinear solver believes that A has gone stale
(SUNTRUE) or not (SUNFALSE).
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jcur is an output indicating whether the routine has updated the Jacobian A (SUNTRUE)
or not (SUNFALSE).

mem is the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error, and a negative value for an unrecoverable error.

Notes The SUNNonlinLSetupFn function sets up the linear system Ax = b where A = ∂F
∂y is

the linearization of the nonlinear residual function F (y) = 0 (when using sunlinsol
direct linear solvers) or calls the user-defined preconditioner setup function (when using
sunlinsol iterative linear solvers). sunnonlinsol implementations that do not require
solving this system, do not utilize sunlinsol linear solvers, or use sunlinsol linear
solvers that do not require setup may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver setup function
assumes that the nonlinear system function has been called prior to the linear solver
setup function as the setup will utilize saved values from the nonlinear system evaluation
(e.g., the updated solution).

SUNNonlinSolLSolveFn

Definition typedef int (*SUNNonlinSolLSolveFn)(N Vector b, void* mem);

Purpose These functions are wrappers to the sundials integrator’s function for solving linear
systems with sunlinsol modules.

Arguments b contains the right-hand side vector for the linear solve on input and the solution
to the linear system on output.

mem is the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error, and a negative value for an unrecoverable error.

Notes The SUNNonlinLSolveFn function solves the linear system Ax = b where A = ∂F
∂y is the

linearization of the nonlinear residual function F (y) = 0. sunnonlinsol implementa-
tions that do not require solving this system or do not use sunlinsol linear solvers may
ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver solve function
assumes that the nonlinear system function has been called prior to the linear solver
solve function as the solve may utilize saved values from the nonlinear system evaluation
(e.g., the updated solution).

SUNNonlinSolConvTestFn

Definition typedef int (*SUNNonlinSolConvTestFn)(SUNNonlinearSolver NLS, N Vector ycor,

N Vector del, realtype tol,

N Vector ewt, void* ctest data);

Purpose These functions are sundials integrator-specific convergence tests for nonlinear solvers
and are typically supplied by each sundials integrator, but users may supply custom
problem-specific versions as desired.

Arguments NLS is the sunnonlinsol object.

ycor is the current correction (nonlinear iterate).

del is the difference between the current and prior nonlinear iterates.

tol is the nonlinear solver tolerance.

ewt is the weight vector used in computing weighted norms.

ctest data is the data pointer provided to SUNNonlinSolSetConvTestFn.
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Return value The return value of this routine will be a negative value if an unrecoverable error oc-
curred or one of the following:

SUN NLS SUCCESS the iteration is converged.

SUN NLS CONTINUE the iteration has not converged, keep iterating.

SUN NLS CONV RECVR the iteration appears to be diverging, try to recover.

Notes The tolerance passed to this routine by sundials integrators is the tolerance in a
weighted root-mean-squared norm with error weight vector ewt. sunnonlinsol mod-
ules utilizing their own convergence criteria may ignore these functions.

12.1.5 SUNNonlinearSolver return codes

The functions provided to sunnonlinsol modules by each sundials integrator, and functions within
the sundials-provided sunnonlinsol implementations utilize a common set of return codes, shown
below in Table 12.1. Here, negative values correspond to non-recoverable failures, positive values to
recoverable failures, and zero to a successful call.

Table 12.1: Description of the SUNNonlinearSolver return codes

Name Value Description

SUN NLS SUCCESS 0 successful call or converged solve

SUN NLS CONTINUE 901 the nonlinear solver is not converged, keep iterating

SUN NLS CONV RECVR 902 the nonlinear solver appears to be diverging, try to recover

SUN NLS MEM NULL -901 a memory argument is NULL

SUN NLS MEM FAIL -902 a memory access or allocation failed

SUN NLS ILL INPUT -903 an illegal input option was provided
SUN NLS VECTOROP ERR -904 a nvector operation failed
SUN NLS EXT FAIL -905 an external library call returned an error

12.1.6 The generic SUNNonlinearSolver module

sundials integrators interact with specific sunnonlinsol implementations through the generic sun-
nonlinsol module on which all other sunnonlinsol implementations are built. The
SUNNonlinearSolver type is a pointer to a structure containing an implementation-dependent content
field and an ops field. The type SUNNonlinearSolver is defined as follows:

typedef struct _generic_SUNNonlinearSolver *SUNNonlinearSolver;

struct _generic_SUNNonlinearSolver {

void *content;

struct _generic_SUNNonlinearSolver_Ops *ops;

};

where the generic SUNNonlinearSolver Ops structure is a list of pointers to the various actual non-
linear solver operations provided by a specific implementation. The generic SUNNonlinearSolver Ops

structure is defined as

struct _generic_SUNNonlinearSolver_Ops {

SUNNonlinearSolver_Type (*gettype)(SUNNonlinearSolver);

int (*initialize)(SUNNonlinearSolver);

int (*setup)(SUNNonlinearSolver, N_Vector, void*);

int (*solve)(SUNNonlinearSolver, N_Vector, N_Vector,

N_Vector, realtype, booleantype, void*);
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int (*free)(SUNNonlinearSolver);

int (*setsysfn)(SUNNonlinearSolver, SUNNonlinSolSysFn);

int (*setlsetupfn)(SUNNonlinearSolver, SUNNonlinSolLSetupFn);

int (*setlsolvefn)(SUNNonlinearSolver, SUNNonlinSolLSolveFn);

int (*setctestfn)(SUNNonlinearSolver, SUNNonlinSolConvTestFn,

void*);

int (*setmaxiters)(SUNNonlinearSolver, int);

int (*getnumiters)(SUNNonlinearSolver, long int*);

int (*getcuriter)(SUNNonlinearSolver, int*);

int (*getnumconvfails)(SUNNonlinearSolver, long int*);

};

The generic sunnonlinsol module defines and implements the nonlinear solver operations defined
in Sections 12.1.1 – 12.1.3. These routines are in fact only wrappers to the nonlinear solver op-
erations provided by a particular sunnonlinsol implementation, which are accessed through the
ops field of the SUNNonlinearSolver structure. To illustrate this point we show below the imple-
mentation of a typical nonlinear solver operation from the generic sunnonlinsol module, namely
SUNNonlinSolSolve, which solves the nonlinear system and returns a flag denoting a successful or
failed solve:

int SUNNonlinSolSolve(SUNNonlinearSolver NLS,

N_Vector y0, N_Vector y,

N_Vector w, realtype tol,

booleantype callLSetup, void* mem)

{

return((int) NLS->ops->solve(NLS, y0, y, w, tol, callLSetup, mem));

}

The Fortran 2003 interface provides a bind(C) derived-type for the generic SUNNonlinearSolver

and the generic SUNNonlinearSolver Ops structures. Their definition is given below.

type, bind(C), public :: SUNNonlinearSolver

type(C_PTR), public :: content

type(C_PTR), public :: ops

end type SUNNonlinearSolver

type, bind(C), public :: SUNNonlinearSolver_Ops

type(C_FUNPTR), public :: gettype

type(C_FUNPTR), public :: initialize

type(C_FUNPTR), public :: setup

type(C_FUNPTR), public :: solve

type(C_FUNPTR), public :: free

type(C_FUNPTR), public :: setsysfn

type(C_FUNPTR), public :: setlsetupfn

type(C_FUNPTR), public :: setlsolvefn

type(C_FUNPTR), public :: setctestfn

type(C_FUNPTR), public :: setmaxiters

type(C_FUNPTR), public :: getnumiters

type(C_FUNPTR), public :: getcuriter

type(C_FUNPTR), public :: getnumconvfails

end type SUNNonlinearSolver_Ops

12.1.7 Usage with sensitivity enabled integrators

When used with sundials packages that support sensitivity analysis capabilities (e.g., cvodes and
idas) a special nvector module is used to interface with sunnonlinsol modules for solves involving
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sensitivity vectors stored in an nvector array. As described below, the nvector senswrapper
module is an nvector implementation where the vector content is an nvector array. This wrapper
vector allows sunnonlinsol modules to operate on data stored as a collection of vectors.

For all sundials-provided sunnonlinsol modules a special constructor wrapper is provided so
users do not need to interact directly with the nvector senswrapper module. These constructors
follow the naming convention SUNNonlinSol ***Sens(count,...) where *** is the name of the
sunnonlinsol module, count is the size of the vector wrapper, and ... are the module-specific
constructor arguments.

The NVECTOR SENSWRAPPER module

This section describes the nvector senswrapper implementation of an nvector. To access the
nvector senswrapper module, include the header file
sundials/sundials nvector senswrapper.h.

The nvector senswrapper module defines an N Vector implementing all of the standard vectors
operations defined in Table 9.1.1 but with some changes to how operations are computed in order to
accommodate operating on a collection of vectors.

1. Element-wise vector operations are computed on a vector-by-vector basis. For example, the
linear sum of two wrappers containing nv vectors of length n, N VLinearSum(a,x,b,y,z), is
computed as

zj,i = axj,i + byj,i, i = 0, . . . , n− 1, j = 0, . . . , nv − 1.

2. The dot product of two wrappers containing nv vectors of length n is computed as if it were the
dot product of two vectors of length nnv. Thus d = N VDotProd(x,y) is

d =

nv−1∑
j=0

n−1∑
i=0

xj,iyj,i.

3. All norms are computed as the maximum of the individual norms of the nv vectors in the
wrapper. For example, the weighted root mean square norm m = N VWrmsNorm(x, w) is

m = max
j

√√√√( 1

n

n−1∑
i=0

(xj,iwj,i)
2

)

To enable usage alongside other nvector modules the nvector senswrapper functions imple-
menting vector operations have SensWrapper appended to the generic vector operation name.

The nvector senswrapper module provides the following constructors for creating an nvec-
tor senswrapper:

N VNewEmpty SensWrapper

Call w = N VNewEmpty SensWrapper(count);

Description The function N VNewEmpty SensWrapper creates an empty nvector senswrapper
wrapper with space for count vectors.

Arguments count (int) the number of vectors the wrapper will contain.

Return value The return value w (of type N Vector) will be a nvector object if the constructor exits
successfully, otherwise w will be NULL.

F2003 Name FN VNewEmpty SensWrapper
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N VNew SensWrapper

Call w = N VNew SensWrapper(count, y);

Description The function N VNew SensWrapper creates an nvector senswrapper wrapper con-
taining count vectors cloned from y.

Arguments count (int) the number of vectors the wrapper will contain.

y (N Vector) the template vectors to use in creating the vector wrapper.

Return value The return value w (of type N Vector) will be a nvector object if the constructor exits
successfully, otherwise w will be NULL.

F2003 Name FN VNew SensWrapper

The nvector senswrapper implementation of the nvector module defines the content field
of the N Vector to be a structure containing an N Vector array, the number of vectors in the vector
array, and a boolean flag indicating ownership of the vectors in the vector array.

struct _N_VectorContent_SensWrapper {

N_Vector* vecs;

int nvecs;

booleantype own_vecs;

};

The following macros are provided to access the content of an nvector senswrapper vector.

• NV CONTENT SW(v) - provides access to the content structure

• NV VECS SW(v) - provides access to the vector array

• NV NVECS SW(v) - provides access to the number of vectors

• NV OWN VECS SW(v) - provides access to the ownership flag

• NV VEC SW(v,i) - provides access to the i-th vector in the vector array

12.1.8 Implementing a Custom SUNNonlinearSolver Module

A sunnonlinsol implementation must do the following:

1. Specify the content of the sunnonlinsol module.

2. Define and implement the required nonlinear solver operations defined in Sections 12.1.1 – 12.1.3.
Note that the names of the module routines should be unique to that implementation in order to
permit using more than one sunnonlinsol module (each with different SUNNonlinearSolver

internal data representations) in the same code.

3. Define and implement a user-callable constructor to create a SUNNonlinearSolver object.

Additionally, a SUNNonlinearSolver implementation may do the following:

1. Define and implement additional user-callable “set” routines acting on the SUNNonlinearSolver
object, e.g., for setting various configuration options to tune the performance of the nonlinear
solve algorithm.

2. Provide additional user-callable “get” routines acting on the SUNNonlinearSolver object, e.g.,
for returning various solve statistics.

To aid in the creation of custom sunnonlinsol modules the generic sunnonlinsol module pro-
vides the utility functions SUNNonlinSolNewEmpty and SUNNonlinsolFreeEmpty. When used in cus-
tom sunnonlinsol constructors, the function SUNNonlinSolNewEmpty will ease the introduction of
any new optional nonlinear solver operations to the sunnonlinsol API by ensuring only required
operations need to be set.
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SUNNonlinSolNewEmpty

Call NLS = SUNNonlinSolNewEmpty();

Description The function SUNNonlinSolNewEmpty allocates a new generic sunnonlinsol object and
initializes its content pointer and the function pointers in the operations structure to
NULL.

Arguments None

Return value This function returns a SUNNonlinearSolver object. If an error occurs when allocating
the object, then this routine will return NULL.

F2003 Name FSUNNonlinSolNewEmpty

SUNNonlinSolFreeEmpty

Call SUNNonlinSolFreeEmpty(NLS);

Description This routine frees the generic SUNNonlinearSolver object, under the assumption that
any implementation-specific data that was allocated within the underlying content struc-
ture has already been freed. It will additionally test whether the ops pointer is NULL,
and, if it is not, it will free it as well.

Arguments NLS (SUNNonlinearSolver)

Return value None

F2003 Name FSUNNonlinSolFreeEmpty

12.2 IDAS SUNNonlinearSolver interface

As discussed in Chapter 2 each integration step requires the (approximate) solution of the nonlinear
system

G(yn) = F

(
tn, yn, h

−1
n

q∑
i=0

αn,iyn−i

)
= 0. (12.1)

Rather than solving this system for the new state yn idas reformulates the system to solve for the
correction ycor to the predicted new state ypred and its derivative ẏpred so that yn = ypred + ycor and
ẏn = ẏpred + h−1n αn,0ycor. The nonlinear system rewritten in terms of ycor is

G(ycor) = F (tn, ypred + ycor, ẏpred + αycor) = 0. (12.2)

where α = h−1n αn,0. Similarly in the forward sensitivity analysis case the nonlinear system is also
reformulated in terms of the correction to the predicted sensitivities.

The nonlinear system function provided by idas to the nonlinear solver module internally updates
the current value of the new state and its derivative based on the current corretion passed to the
function (as well as the sensitivities). These values are used when calling the DAE residual function
and when setting up linear solves (e.g., for updating the Jacobian or preconditioner).

idas provides several advanced functions that will not be needed by most users, but might be
useful for users who choose to provide their own implementation of the SUNNonlinearSolver API.
For example, such a user might need access to the current y and ẏ vectors to compute Jacobian data.

IDAGetCurrentCj

Call flag = IDAGetCurrentCj(ida mem, &cj);

Description The function IDAGetCurrentCj returns the scalar cj which is proportional to the inverse
of the step size (α in Eq. 2.6).

Arguments ida mem (void *) pointer to the idas memory block.



12.2 IDAS SUNNonlinearSolver interface 411

cj (realtype) the value of cj .

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetCurrentCj

IDAGetCurrentY

Call flag = IDAGetCurrentY(ida mem, &y);

Description The function IDAGetCurrentY returns the current y vector.

Arguments ida mem (void *) pointer to the idas memory block.

y (N Vector *) the current y vector

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetCurrentY

IDAGetCurrentYp

Call flag = IDAGetCurrentYp(ida mem, &yp);

Description The function IDAGetCurrentYp returns the current ẏ vector.

Arguments ida mem (void *) pointer to the idas memory block.

yp (N Vector *) the current ẏ vector

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetCurrentYp

IDAGetCurrentYSens

Call flag = IDAGetCurrentYSens(ida mem, &yyS);

Description The function IDAGetCurrentYSens returns the current sensitivity vector array.

Arguments ida mem (void *) pointer to the idas memory block.

yyS (N Vector **) pointer to the vector array that is set to the array of sensitivity
vectors

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetCurrentYSens

IDAGetCurrentYpSens

Call flag = IDAGetCurrentYpSens(ida mem, &ypS);

Description The function IDAGetCurrentYpSens returns the derivative the current sensitivity vector
array.

Arguments ida mem (void *) pointer to the idas memory block.
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ypS (N Vector **) pointer to the vector array that is set to the array of sensitivity
vector derivatives

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetCurrentYpSens

IDAGetNonlinearSystemData

Call flag = IDAGetNonlinearSystemData(ida mem, &tcur, &yypred, &yppred,

&yyn, &ypn, &res, &cj, user data);

Description The function IDAGetNonlinearSystemData returns all internal data required to con-
struct the current nonlinear system (12.2).

Arguments ida mem (void *) pointer to the idas memory block.

tcur (realtype*) current value of the independent variable tn.

yypred (N Vector*) predicted value of ypred at tn.

yppred (N Vector*) predicted value of ẏpred at tn.

yyn (N Vector*) the vector yn. This vector may be not current and may need
to be filled (see the note below).

ypn (N Vector*) the vector ẏn. This vector may be not current and may need
to be filled (see the note below).

res (N Vector*) the resiudal function evaluated at the current time and state,
F (tn, yn, ẏn). This vector may be not current and may need to be filled (see
the note below).

cj (realtype*) the scalar cj which is proportional to the inverse of the step
size (α in (12.2)).

user data (void**) pointer to the user-defined data structures

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes This routine is intended for users who wish to attach a custom SUNNonlinSolSysFn (see
§12.1.4) to an existing SUNNonlinearSolver object (through a call to SUNNonlinSolSetSysFn)
or who need access to nonlinear system data to compute the nonlinear system fucntion
as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver

object, the user should call IDAGetNonlinearSystemData inside the nonlinear system
function to access the requisite data for evaluting the nonlinear system function of their
choosing. Additionlly, if the SUNNonlinearSolver object (existing or custom) leverages
the SUNNonlinSolLSetupFn and/or SUNNonlinSolLSolveFn functions supplied by idas
(through calls to SUNNonlinSolSetLSetupFn and SUNNonlinSolSetLSolveFn respec-
tively) the vectors yyn, ypn, and res must be filled in by the user’s SUNNonlinSolSysFn
with the current state and corresponding evaluation of the right-hand side function re-
spectively i.e.,

yyn = ypred + ycor,

ypn = ẏpred + αẏcor,

res = F (tn, yn, ẏn) ,

where ycor was the first argument supplied to the SUNNonlinSolSysFn.
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If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn
is used) then the vectors yyn, ypn, and res are only current when IDAGetNonlinearSystemData

is called after an evaluation of the nonlinear system function.

F2003 Name FIDAGetNonlinearSystemData

IDAGetNonlinearSystemDataSens

Call flag = IDAGetNonlinearSystemDataSens(ida mem, &tcur, &yySpred, &ypSpred,

&yySn, &ypSn, &cj, user data);

Description The function IDAGetNonlinearSystemDataSens returns all internal sensitivity data
required to construct the current nonlinear system (12.2).

Arguments ida mem (void *) pointer to the idas memory block.

tcur (realtype*) current value of the independent variable tn.

yySpred (N Vector**) predicted value of ySi,pred at tn for i = 0 . . . Ns − 1.

ypSpred (N Vector**) predicted value of ẏSi,pred at tn for i = 0 . . . Ns − 1.

yySn (N Vector**) the vectors ySi,n. These vectors may be not current (see the
note below).

ypSn (N Vector**) the vectors ẏSi,n. These vectors may be not current (see the
note below).

cj (realtype*) the scalar cj which is proportional to the inverse of the step
size (α in (12.2)).

user data (void**) pointer to the user-defined data structures

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes This routine is intended for users who wish to attach a custom SUNNonlinSolSysFn (see
§12.1.4) to an existing SUNNonlinearSolver object (through a call to SUNNonlinSolSetSysFn)
or who need access to nonlinear system data to compute the nonlinear system fucntion
as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver

object, the user should call IDAGetNonlinearSystemDataSens inside the nonlinear
system function to access the requisite data for evaluting the nonlinear system func-
tion of their choosing. Additionlly, if the the vectors yySn and ypSn are provided as
additional workspace and do not need to be filled in by the user’s SUNNonlinSolSysFn.

If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn
is used) then the vectors yySn and ypSn are only current when IDAGetNonlinearSystemDataSens

is called after an evaluation of the nonlinear system function.

F2003 Name FIDAGetNonlinearSystemDataSens

IDAComputeY

Call flag = IDAComputeY(ida mem, ycor, y);

Description The function computes the current y(t) vector based on the given correction vector from
the nonlinear solver.

Arguments ida mem (void *) pointer to the idas memory block

ycor (N Vector) the correction

y (N Vector) the output vector

Return value The return value flag (of type int) is one of
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IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAComputeY

IDAComputeYp

Call flag = IDAComputeYp(ida mem, ycor, yp);

Description The function computes ẏ(t) based on the given correction vector from the nonlinear
solver.

Arguments ida mem (void *) pointer to the idas memory block

ycor (N Vector) the correction

yp (N Vector) the output vector array

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAComputeYp

IDAComputeYSens

Call flag = IDAComputeYSens(ida mem, ycorS, yys);

Description The function computes the sensitivities based on the given correction vector from the
nonlinear solver.

Arguments ida mem (void *) pointer to the idas memory block

ycorS (N Vector *) the correction

yyS (N Vector *) the output vector array

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAComputeYSens

IDAComputeYpSens

Call flag = IDAComputeYpSens(ida mem, ycorS, ypS);

Description The function computes the sensitivity derivatives based on the given correction vector
from the nonlinear solver.

Arguments ida mem (void *) pointer to the idas memory block

ycorS (N Vector *) the correction

ypS (N Vector *) the output vector array

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAComputeYpSens

12.3 The SUNNonlinearSolver Newton implementation

This section describes the sunnonlinsol implementation of Newton’s method. To access the sunnon-
linsol newton module, include the header file sunnonlinsol/sunnonlinsol newton.h. We note
that the sunnonlinsol newton module is accessible from sundials integrators without separately
linking to the libsundials sunnonlinsolnewton module library.
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12.3.1 SUNNonlinearSolver Newton description

To find the solution to
F (y) = 0 (12.3)

given an initial guess y(0), Newton’s method computes a series of approximate solutions

y(m+1) = y(m) + δ(m+1) (12.4)

where m is the Newton iteration index, and the Newton update δ(m+1) is the solution of the linear
system

A(y(m))δ(m+1) = −F (y(m)) , (12.5)

in which A is the Jacobian matrix
A ≡ ∂F/∂y . (12.6)

Depending on the linear solver used, the sunnonlinsol newton module will employ either a Mod-
ified Newton method, or an Inexact Newton method [12, 16, 25, 27, 43]. When used with a direct
linear solver, the Jacobian matrix A is held constant during the Newton iteration, resulting in a Mod-
ified Newton method. With a matrix-free iterative linear solver, the iteration is an Inexact Newton
method.

In both cases, calls to the integrator-supplied SUNNonlinSolLSetupFn function are made infre-
quently to amortize the increased cost of matrix operations (updating A and its factorization within
direct linear solvers, or updating the preconditioner within iterative linear solvers). Specifically, sun-
nonlinsol newton will call the SUNNonlinSolLSetupFn function in two instances:

(a) when requested by the integrator (the input callLSetSetup is SUNTRUE) before attempting the
Newton iteration, or

(b) when reattempting the nonlinear solve after a recoverable failure occurs in the Newton iteration
with stale Jacobian information (jcur is SUNFALSE). In this case, sunnonlinsol newton will
set jbad to SUNTRUE before calling the SUNNonlinSolLSetupFn function.

Whether the Jacobian matrix A is fully or partially updated depends on logic unique to each integrator-
supplied SUNNonlinSolSetupFn routine. We refer to the discussion of nonlinear solver strategies
provided in Chapter 2 for details on this decision.

The default maximum number of iterations and the stopping criteria for the Newton iteration
are supplied by the sundials integrator when sunnonlinsol newton is attached to it. Both the
maximum number of iterations and the convergence test function may be modified by the user by
calling the SUNNonlinSolSetMaxIters and/or SUNNonlinSolSetConvTestFn functions after attaching
the sunnonlinsol newton object to the integrator.

12.3.2 SUNNonlinearSolver Newton functions

The sunnonlinsol newton module provides the following constructors for creating a
SUNNonlinearSolver object.

SUNNonlinSol Newton

Call NLS = SUNNonlinSol Newton(y);

Description The function SUNNonlinSol Newton creates a SUNNonlinearSolver object for use with
sundials integrators to solve nonlinear systems of the form F (y) = 0 using Newton’s
method.

Arguments y (N Vector) a template for cloning vectors needed within the solver.

Return value The return value NLS (of type SUNNonlinearSolver) will be a sunnonlinsol object if
the constructor exits successfully, otherwise NLS will be NULL.

F2003 Name FSUNNonlinSol Newton
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SUNNonlinSol NewtonSens

Call NLS = SUNNonlinSol NewtonSens(count, y);

Description The function SUNNonlinSol NewtonSens creates a SUNNonlinearSolver object for use
with sundials sensitivity enabled integrators (cvodes and idas) to solve nonlinear
systems of the form F (y) = 0 using Newton’s method.

Arguments count (int) the number of vectors in the nonlinear solve. When integrating a system
containing Ns sensitivities the value of count is:

• Ns+1 if using a simultaneous corrector approach.

• Ns if using a staggered corrector approach.

y (N Vector) a template for cloning vectors needed within the solver.

Return value The return value NLS (of type SUNNonlinearSolver) will be a sunnonlinsol object if
the constructor exits successfully, otherwise NLS will be NULL.

F2003 Name FSUNNonlinSol NewtonSens

The sunnonlinsol newton module implements all of the functions defined in sections 12.1.1 – 12.1.3
except for the SUNNonlinSolSetup function. The sunnonlinsol newton functions have the same
names as those defined by the generic sunnonlinsol API with Newton appended to the function
name. Unless using the sunnonlinsol newton module as a standalone nonlinear solver the generic
functions defined in sections 12.1.1 – 12.1.3 should be called in favor of the sunnonlinsol newton-
specific implementations.

The sunnonlinsol newton module also defines the following additional user-callable function.

SUNNonlinSolGetSysFn Newton

Call retval = SUNNonlinSolGetSysFn Newton(NLS, SysFn);

Description The function SUNNonlinSolGetSysFn Newton returns the residual function that defines
the nonlinear system.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

SysFn (SUNNonlinSolSysFn*) the function defining the nonlinear system.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes This function is intended for users that wish to evaluate the nonlinear residual in a
custom convergence test function for the sunnonlinsol newton module. We note
that sunnonlinsol newton will not leverage the results from any user calls to SysFn.

F2003 Name FSUNNonlinSolGetSysFn Newton

SUNNonlinSolSetInfoFile Newton

Call retval = SUNNonlinSolSetInfoFile Newton(NLS, info file);

Description The function SUNNonlinSolSetInfoFile Newton sets the output file where all informa-
tive (non-error) messages should be directed.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUN NLS SUCCESS if successful

• SUN NLS MEM NULL if the SUNNonlinearSolver memory was NULL

• SUN NLS ILL INPUT if sundials was not built with monitoring enabled
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Notes This function is intended for users that wish to monitor the nonlinear solver progress.
By default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNNonlinSolSetInfoFile Newton

SUNNonlinSolSetPrintLevel Newton

Call retval = SUNNonlinSolSetPrintLevel Newton(NLS, print level);

Description The function SUNNonlinSolSetPrintLevel Newton specifies the level of verbosity of
the output.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each nonlinear iteration the residual norm is printed

Return value The return value is

• SUN NLS SUCCESS if successful

• SUN NLS MEM NULL if the SUNNonlinearSolver memory was NULL

• SUN NLS ILL INPUT if sundials was not built with monitoring enabled, or the
print level value was invalid

Notes This function is intended for users that wish to monitor the nonlinear solver progress.
By default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNNonlinSolSetPrintLevel Newton

12.3.3 SUNNonlinearSolver Newton Fortran interfaces

The sunnonlinsol newton module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunnonlinsol newton mod Fortran module defines interfaces to all sunnonlinsol newton
C functions using the intrinsic iso c binding module which provides a standardized mechanism
for interoperating with C. As noted in the C function descriptions above, the interface functions
are named after the corresponding C function, but with a leading ‘F’. For example, the function
SUNNonlinSol Newton is interfaced as FSUNNonlinSol Newton.

The Fortran 2003 sunnonlinsol newton interface module can be accessed with the use state-
ment, i.e. use fsunnonlinsol newton mod, and linking to the library
libsundials fsunnonlinsolnewton mod.lib in addition to the C library. For details on where the
library and module file fsunnonlinsol newton mod.mod are installed see Appendix A. We note that
the module is accessible from the Fortran 2003 sundials integrators without separately linking to
the libsundials fsunnonlinsolnewton mod library.

FORTRAN 77 interface functions

For sundials integrators that include a Fortran 77 interface, the sunnonlinsol newton module
also includes a Fortran-callable function for creating a SUNNonlinearSolver object.
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FSUNNEWTONINIT

Call FSUNNEWTONINIT(code, ier);

Description The function FSUNNEWTONINIT can be called for Fortran programs to create a
SUNNonlinearSolver object for use with sundials integrators to solve nonlinear sys-
tems of the form F (y) = 0 with Newton’s method.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, and 4
for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

12.3.4 SUNNonlinearSolver Newton content

The sunnonlinsol newton module defines the content field of a SUNNonlinearSolver as the fol-
lowing structure:

struct _SUNNonlinearSolverContent_Newton {

SUNNonlinSolSysFn Sys;

SUNNonlinSolLSetupFn LSetup;

SUNNonlinSolLSolveFn LSolve;

SUNNonlinSolConvTestFn CTest;

N_Vector delta;

booleantype jcur;

int curiter;

int maxiters;

long int niters;

long int nconvfails;

void* ctest_data;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
Sys - the function for evaluating the nonlinear system,

LSetup - the package-supplied function for setting up the linear solver,

LSolve - the package-supplied function for performing a linear solve,

CTest - the function for checking convergence of the Newton iteration,

delta - the Newton iteration update vector,

jcur - the Jacobian status (SUNTRUE = current, SUNFALSE = stale),

curiter - the current number of iterations in the solve attempt,

maxiters - the maximum number of Newton iterations allowed in a solve,

niters - the total number of nonlinear iterations across all solves,

nconvfails - the total number of nonlinear convergence failures across all solves, and

ctest data - the data pointer passed to the convergence test function.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed
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12.4 The SUNNonlinearSolver PetscSNES implementation

This section describes the sunnonlinsol interface to the PETSc SNES nonlinear solver(s). To enable
the sunnonlinsol petscsnes module, SUNDIALS must be configured to use PETSc. Instructions
on how to do this are given in Chapter A.1.4. To access the module, users must include the header file
sunnonlinsol/sunnonlinsol petscsnes.h. The library to link to is libsundials sunnonlinsolpetsc.lib
where .lib is .so for shared libaries and .a for static libraries. Users of the sunnonlinsol petscsnes
should also see the section nvector petsc 9.8 which discusses the nvector interface to the PETSc
Vec API.

12.4.1 SUNNonlinearSolver PetscSNES description

The sunnonlinsol petscsnes implementation allows users to utilize a PETSc SNES nonlinear solver
to solve the nonlinear systems that arise in the sundials integrators. Since SNES uses the KSP linear
solver interface underneath it, the sunnonlinsol petscsnes implementation does not interface with
sundials linear solvers. Instead, users should set nonlinear solver options, linear solver options, and
preconditioner options through the PETSc SNES, KSP, and PC APIs [10].

!

Important usage notes for the sunnonlinsol petscsnes implementation are provided below:

• The sunnonlinsol petscsnes implementation handles calling SNESSetFunction at construc-
tion. The actual residual function F (y) is set by the sundials integrator when the sunnon-
linsol petscsnes object is attached to it. Therefore, a user should not call SNESSetFunction
on a SNES object that is being used with sunnonlinsol petscsnes. For these reasons, it is
recommended, although not always necessary, that the user calls SUNNonlinSol PetscSNES with
the new SNES object immediately after calling

• The number of nonlinear iterations is tracked by sundials separately from the count kept
by SNES. As such, the function SUNNonlinSolGetNumIters reports the cumulative number of
iterations across the lifetime of the sunnonlinsol object.

• Some “converged” and “diverged” convergence reasons returned by SNES are treated as recover-
able convergence failures by sundials. Therefore, the count of convergence failures returned by
SUNNonlinSolGetNumConvFails will reflect the number of recoverable convergence failures as de-
termined by sundials, and may differ from the count returned by SNESGetNonlinearStepFailures.

• The sunnonlinsol petscsnes module is not currently compatible with the cvodes or idas
staggered or simultaneous sensitivity strategies.

12.4.2 SUNNonlinearSolver PetscSNES functions

The sunnonlinsol petscsnes module provides the following constructor for creating a SUNNonlinearSolver
object.

SUNNonlinSol PetscSNES

Call NLS = SUNNonlinSol PetscSNES(y, snes);

Description The function SUNNonlinSol PetscSNES creates a SUNNonlinearSolver object that
wraps a PETSc SNES object for use with sundials. This will call SNESSetFunction on
the provided SNES object.

Arguments snes (SNES) a PETSc SNES object

y (N Vector) a N Vector object of type nvector petsc that used as a template
for the residual vector

Return value A sunnonlinsol object if the constructor exits successfully, otherwise NLS will be NULL.
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Notes This function calls SNESSetFunction and will overwrite whatever function was previ- !

ously set. Users should not call SNESSetFunction on the SNES object provided to the
constructor.

The sunnonlinsol petscsnes module implements all of the functions defined in sections 12.1.1
– 12.1.3 except for SUNNonlinSolSetup, SUNNonlinSolSetLSetupFn,
SUNNonlinSolSetLSolveFn, SUNNonlinSolSetConvTestFn, and SUNNonlinSolSetMaxIters.

The sunnonlinsol petscsnes functions have the same names as those defined by the generic
sunnonlinsol API with PetscSNES appended to the function name. Unless using the sunnon-
linsol petscsnes module as a standalone nonlinear solver the generic functions defined in sections
12.1.1 – 12.1.3 should be called in favor of the sunnonlinsol petscsnes-specific implementations.

The sunnonlinsol petscsnes module also defines the following additional user-callable func-
tions.

SUNNonlinSolGetSNES PetscSNES

Call retval = SUNNonlinSolGetSNES PetscSNES(NLS, SNES* snes);

Description The function SUNNonlinSolGetSNES PetscSNES gets the SNES context that was wrapped.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

snes (SNES*) a pointer to a PETSc SNES object that will be set upon return

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

SUNNonlinSolGetPetscError PetscSNES

Call retval = SUNNonlinSolGetPetscError PetscSNES(NLS, PestcErrorCode* error);

Description The function SUNNonlinSolGetPetscError PetscSNES gets the last error code returned
by the last internal call to a PETSc API function.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

error (PestcErrorCode*) a pointer to a PETSc error integer that will be set upon
return

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

SUNNonlinSolGetSysFn PetscSNES

Call retval = SUNNonlinSolGetSysFn PetscSNES(NLS, SysFn);

Description The function SUNNonlinSolGetSysFn PetscSNES returns the residual function that de-
fines the nonlinear system.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

SysFn (SUNNonlinSolSysFn*) the function defining the nonlinear system

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

12.4.3 SUNNonlinearSolver PetscSNES content

The sunnonlinsol petscsnes module defines the content field of a SUNNonlinearSolver as the
following structure:

struct _SUNNonlinearSolverContent_PetscSNES {

int sysfn_last_err;

PetscErrorCode petsc_last_err;

long int nconvfails;
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long int nni;

void *imem;

SNES snes;

Vec r;

N_Vector y, f;

SUNNonlinSolSysFn Sys;

};

These entries of the content field contain the following information:
sysfn last err - last error returned by the system defining function,

petsc last err - last error returned by PETSc

nconvfails - number of nonlinear converge failures (recoverable or not),

nni - number of nonlinear iterations,

imem - sundials integrator memory,

snes - PETSc SNES context,

r - the nonlinear residual,

y - wrapper for PETSc vectors used in the system function,

f - wrapper for PETSc vectors used in the system function,

Sys - nonlinear system definining function.





Chapter 13

Description of the SUNMemory
module

To support applications which leverage memory pools, or utilize a memory abstraction layer, sundials
provides a set of utilities we will collectively refer to as the SUNMemoryHelper API. The goal of this
API is to allow users to leverage operations defined by native sundials data structures while allowing
the user to have finer-grained control of the memory management.

13.1 The SUNMemoryHelper API

This API consists of three new sundials types: SUNMemoryType, SUNMemory, and SUNMemoryHelper,
which we now define.

The SUNMemory structure wraps a pointer to actual data. This structure is defined as

typedef struct _SUNMemory

{

void* ptr;

SUNMemoryType type;

booleantype own;

} *SUNMemory;

The SUNMemoryType type is an enumeration that defines the four supported memory types:

typedef enum

{

SUNMEMTYPE_HOST, /* pageable memory accessible on the host */

SUNMEMTYPE_PINNED, /* page-locked memory accesible on the host */

SUNMEMTYPE_DEVICE, /* memory accessible from the device */

SUNMEMTYPE_UVM /* memory accessible from the host or device */

} SUNMemoryType;

Finally, the SUNMemoryHelper structure is defined as

struct _SUNMemoryHelper

{

void* content;

SUNMemoryHelper_Ops ops;

} *SUNMemoryHelper;

where SUNMemoryHelper Ops is defined as
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typedef struct _SUNMemoryHelper_Ops

{

/* operations that implementations are required to provide */

int (*alloc)(SUNMemoryHelper, SUNMemory* memptr, size_t mem_size, SUNMemoryType mem_type);

int (*dealloc)(SUNMemoryHelper, SUNMemory mem);

int (*copy)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size);

/* operations that provide default implementations */

int (*copyasync)(SUNMemoryHelper, SUNMemory dst, SUNMemory src,

size_t mem_size, void* ctx);

SUNMemoryHelper (*clone)(SUNMemoryHelper);

int (*destroy)(SUNMemoryHelper);

} *SUNMemoryHelper_Ops;

13.1.1 Implementation defined operations

The SUNMemory API also defines the following operations which do require a SUNMemoryHelper in-
stance and require the implementation to define them:

SUNMemoryHelper Alloc

Call retval = SUNMemoryHelper Alloc(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc

Call retval = SUNMemoryHelper Dealloc(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy

Call retval = SUNMemoryHelper Copy(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object should use the memory types of
dst and src to determine the appropriate transfer type necessary.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Return value An int flag indicating success (zero) or failure (non-zero).
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13.1.2 Utility Functions

The SUNMemoryHelper API defines the following functions which do not require a SUNMemoryHelper

instance:

SUNMemoryHelper Alias

Call mem2 = SUNMemoryHelper Alias(mem1);

Description Returns a SUNMemory object whose ptr field points to the same address as mem1.
The new object will not have ownership of ptr, therefore, it will not free ptr when
SUNMemoryHelper Dealloc is called.

Arguments mem1 (SUNMemory) a SUNMemory object

Return value A SUNMemory object.

SUNMemoryHelper Wrap

Call mem = SUNMemoryHelper Wrap(ptr, mem type);

Description Returns a SUNMemory object whose ptr field points to the ptr argument passed to the
function. The new object will not have ownership of ptr, therefore, it will not free ptr

when SUNMemoryHelper Dealloc is called.

Arguments ptr (SUNMemoryType) the data pointer to wrap in a SUNMemory object

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value A SUNMemory object.

SUNMemoryHelper NewEmpty

Call helper = SUNMemoryHelper NewEmpty();

Description Returns an empty SUNMemoryHelper. This is useful for building custom SUNMemoryHelper

implementations.

Arguments

Return value A SUNMemoryHelper object.

SUNMemoryHelper CopyOps

Call retval = SUNMemoryHelper CopyOps(src, dst);

Description Copies the ops field of src to the ops field of dst. This is useful for building custom
SUNMemoryHelper implementations.

Arguments src (SUNMemoryHelper) the object to copy from

dst (SUNMemoryHelper) the object to copy to

Return value An int flag indicating success (zero) or failure (non-zero).

13.1.3 Implementation overridable operations with defaults

In addition, the SUNMemoryHelper API defines the following optionally overridable operations which
do require a SUNMemoryHelper instance:
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SUNMemoryHelper CopyAsync

Call retval = SUNMemoryHelper CopyAsync(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object should use the memory types of
dst and src to determine the appropriate transfer type necessary. The ctx argument
is used when a different execution “stream” needs to be provided to perform the copy
in, e.g. with CUDA this would be a cudaStream t.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) typically a handle for an object representing an alternate execution
stream, but it can be any implementation specific data

Return value An int flag indicating success (zero) or failure (non-zero).

Notes If this operation is not defined by the implementation, then SUNMemoryHelper Copy will!

be used.

SUNMemoryHelper Clone

Call helper2 = SUNMemoryHelper Clone(helper);

Description Clones the SUNMemoryHelper object itself.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object to clone

Return value A SUNMemoryHelper object.

Notes If this operation is not defined by the implementation, then the default clone will!

only copy the SUNMemoryHelper Ops structure stored in helper->ops, and not the
helper->content field.

SUNMemoryHelper Destroy

Call retval = SUNMemoryHelper Destroy(helper);

Description Destroys (frees) the SUNMemoryHelper object itself.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object to destroy

Return value An int flag indicating success (zero) or failure (non-zero).

Notes If this operation is not defined by the implementation, then the default destroy will only!

free the helper->ops field and the helper itself. The helper->content field will not
be freed.

13.1.4 Implementing a custom SUNMemoryHelper

A particular implementation of the SUNMemoryHelper API must:

• Define and implement the required operations. Note that the names of these routines should
be unique to that implementation in order to permit using more than one SUNMemoryHelper

module in the same code.

• Optionally, specify the content field of SUNMemoryHelper.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMemoryHelper.

An example of a custom SUNMemoryHelper is given in examples/utilities/custom memory helper.h.
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13.2 The SUNMemoryHelper Cuda implementation

The SUNMemoryHelper Cuda module is an implementation of the SUNMemoryHelper API that interfaces
to the NVIDIA CUDA [5] library. The implementation defines the constructor

SUNMemoryHelper Cuda

Call helper = SUNMemoryHelper Cuda();

Description Allocates and returns a SUNMemoryHelper object for handling CUDA memory.

Arguments None

Return value A SUNMemoryHelper object if successful, or NULL if not.

13.2.1 SUNMemoryHelper API functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemoryHelper Alloc Cuda

Call retval = SUNMemoryHelper Alloc Cuda(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

The SUNMemoryType supported are

• SUNMEMTYPE HOST – memory is allocated with a call to malloc

• SUNMEMTYPE PINNED – memory is allocated with a call to cudaMallocHost

• SUNMEMTYPE DEVICE – memory is allocated with a call to cudaMalloc

• SUNMEMTYPE UVM – memory is allocated with a call to cudaMallocManaged

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc Cuda

Call retval = SUNMemoryHelper Dealloc Cuda(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy Cuda

Call retval = SUNMemoryHelper Copy Cuda(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses cudaMemcpy underneath.
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Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Notes An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper CopyAsync Cuda

Call retval = SUNMemoryHelper CopyAsync Cuda(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses cudaMemcpyAsync underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) the cudaStream t handle for the stream that the copy will be per-
formed on

Notes An int flag indicating success (zero) or failure (non-zero).

13.3 The SUNMemoryHelper Hip implementation

The SUNMemoryHelper Hip module is an implementation of the SUNMemoryHelper API that interfaces
to the AMD ROCm HIP library. The implementation defines the constructor

SUNMemoryHelper Hip

Call helper = SUNMemoryHelper Hip();

Description Allocates and returns a SUNMemoryHelper object for handling HIP memory.

Arguments None

Return value A SUNMemoryHelper object if successful, or NULL if not.

13.3.1 SUNMemoryHelper API functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemoryHelper Alloc Hip

Call retval = SUNMemoryHelper Alloc Hip(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

The SUNMemoryType supported are

• SUNMEMTYPE HOST – memory is allocated with a call to malloc

• SUNMEMTYPE PINNED – memory is allocated with a call to hipMallocHost

• SUNMEMTYPE DEVICE – memory is allocated with a call to hipMalloc
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• SUNMEMTYPE UVM – memory is allocated with a call to hipMallocManaged

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc Hip

Call retval = SUNMemoryHelper Dealloc Hip(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy Hip

Call retval = SUNMemoryHelper Copy Hip(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses hipMemcpy underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Notes An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper CopyAsync Hip

Call retval = SUNMemoryHelper CopyAsync Hip(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses hipMemcpyAsync underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) the hipStream t handle for the stream that the copy will be per-
formed on

Notes An int flag indicating success (zero) or failure (non-zero).

13.4 The SUNMemoryHelper Sycl implementation

The SUNMemoryHelper Sycl module is an implementation of the SUNMemoryHelper API that interfaces
to the SYCL abstraction layer. The implementation defines the constructor
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SUNMemoryHelper Sycl

Call helper = SUNMemoryHelper Sycl(Q);

Description Allocates and returns a SUNMemoryHelper object for handling SYCL memory.

Arguments Q (sycl::queue) the queue to use for memory operations

Return value A SUNMemoryHelper object if successful, or NULL if not.

13.4.1 SUNMemoryHelper API functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemoryHelper Alloc Sycl

Call retval = SUNMemoryHelper Alloc Sycl(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

The SUNMemoryType supported are

• SUNMEMTYPE HOST – memory is allocated with a call to malloc

• SUNMEMTYPE PINNED – memory is allocated with a call to sycl::malloc host

• SUNMEMTYPE DEVICE – memory is allocated with a call to sycl::malloc device

• SUNMEMTYPE UVM – memory is allocated with a call to sycl::malloc shared

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc Sycl

Call retval = SUNMemoryHelper Dealloc Sycl(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy Sycl

Call retval = SUNMemoryHelper Copy Sycl(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses syclMemcpy underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Notes An int flag indicating success (zero) or failure (non-zero).
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SUNMemoryHelper CopyAsync Sycl

Call retval = SUNMemoryHelper CopyAsync Sycl(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses syclMemcpyAsync underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) is unsued in this function

Notes An int flag indicating success (zero) or failure (non-zero).





Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver). To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations of the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

solverdir is the directory solver-x.y.z created above; i.e., the directory containing the sundi-
als sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/CMAKE INSTALL LIBDIR, with instdir and
CMAKE INSTALL LIBDIR specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as solverdir and such an attempt will lead to
an error. This prevents “polluting” the source tree and allows efficient builds for different
configurations and/or options.

• The installation directory instdir can not be the same as the source directory solverdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as “templates” for your own problems. CMake installs CMakeLists.txt files
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and also (as an option available only under Unix/Linux) Makefile files. Note this installation
approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in “undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 3.1.3 or higher and a working C compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries,
for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. CMake is con-
tinually adding new features, and the latest version can be downloaded from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake web-
site. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users will
be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The instdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string
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– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the solverdir:

% ccmake ../solverdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-
dials on this system. Back at the command prompt, you can now run:

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install
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Figure A.2: Changing the instdir for sundials and corresponding examples

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> ../solverdir

% make

% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON
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BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: ON

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel

Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE <language> FLAGS.

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ applications by
default without setting any additional configuration options.

CMAKE CXX FLAGS - Flags for C++ compiler
Default:

CMAKE CXX FLAGS DEBUG - Flags used by the C++ compiler during debug builds
Default: -g

CMAKE CXX FLAGS MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE CXX FLAGS RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX STANDARD - The C++ standard to build C++ parts of sundials with.
Default: 11
Note: Options are 98, 11, 14, 17, 20. This option is on used when a C++ compiler is required.
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CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or LAPACK support is enabled (ENABLE LAPACK is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Ex-
ported sundials header files and libraries will be installed under subdirectories include and
CMAKE INSTALL LIBDIR of CMAKE INSTALL PREFIX, respectively.

CMAKE INSTALL LIBDIR - Library installation directory
Default:
Note: This is the directory within CMAKE INSTALL PREFIX that the sundials libraries will be
installed under. The default is automatically set based on the operating system using the
GNUInstallDirs CMake module.

Fortran INSTALL MODDIR - Fortran module installation directory
Default: fortran

ENABLE CUDA - Build the sundials cuda modules.
Default: OFF

CUDA ARCH - Specifies the CUDA architecture to compile for.
Default: sm 30

EXAMPLES ENABLE C - Build the sundials C examples
Default: ON

EXAMPLES ENABLE CUDA - Build the sundials cuda examples
Default: OFF
Note: You need to enable cuda support to build these examples.

EXAMPLES ENABLE CXX - Build the sundials C++ examples
Default: OFF unless ENABLE TRILINOS is ON.

EXAMPLES ENABLE F77 - Build the sundials Fortran77 examples
Default: ON (if F77 INTERFACE ENABLE is ON)

EXAMPLES ENABLE F90 - Build the sundials Fortran90 examples
Default: ON (if F77 INTERFACE ENABLE is ON)

EXAMPLES ENABLE F2003 - Build the sundials Fortran2003 examples
Default: ON (if BUILD FORTRAN MODULE INTERFACE is ON)
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EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the sundials example programs are enabled
(EXAMPLES ENABLE <language> is ON). If the user requires installation of example programs
then the sources and sample output files for all sundials modules that are currently enabled
will be exported to the directory specified by EXAMPLES INSTALL PATH. A CMake configuration
script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed sundials libraries) will be automatically generated and exported
to the directory specified by EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE INSTALL PREFIX.

F77 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 77 interfaces
Default: OFF

BUILD FORTRAN MODULE INTERFACE - Enable Fortran-C support via the Fortran 2003 interfaces
Default: OFF

ENABLE HYPRE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in A.1.4.

HYPRE INCLUDE DIR - Path to hypre header files

HYPRE LIBRARY DIR - Path to hypre installed library files

ENABLE KLU - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in A.1.4.

KLU INCLUDE DIR - Path to SuiteSparse header files

KLU LIBRARY DIR - Path to SuiteSparse installed library files

ENABLE LAPACK - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in A.1.4.

LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

ENABLE MAGMA - Enable MAGMA support.
Default: OFF
Note: Setting this option to ON will trigger additional options related to MAGMA.

MAGMA DIR - Path to the root of a MAGMA installation.
Default: none

SUNDIALS MAGMA BACKENDS - Which MAGMA backend to use under the SUNDIALS MAGMA inter-
face.
Default: CUDA
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ENABLE MPI - Enable MPI support. This will build the parallel nvector and the MPI-aware version
of the ManyVector library.
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI C COMPILER - mpicc program
Default:

MPI CXX COMPILER - mpicxx program
Default:
Note: This option is triggered only if MPI is enabled (ENABLE MPI is ON) and C++ examples are
enabled (EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ MPI appli-
cations by default without setting any additional configuration options other than ENABLE MPI.

MPI Fortran COMPILER - mpif77 or mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (ENABLE MPI is ON) and Fortran-C support
is enabled (F77 INTERFACE ENABLE or BUILD FORTRAN MODULE INTERFACE is ON).

MPIEXEC EXECUTABLE - Specify the executable for running MPI programs
Default: mpirun
Note: This option is triggered only if MPI is enabled (ENABLE MPI is ON).

ENABLE ONEMKL - Enable oneMKL support.
Default: OFF

ENABLE OPENMP - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

OPENMP DEVICE ENABLE - Enable OpenMP device offloading (build the OpenMPDEV nvector) if sup-
ported by the provided compiler.
Default: OFF

OPENMP DEVICE WORKS - advanced option - Skip the check done to see if the OpenMP provided by
the compiler supports OpenMP device offloading.
Default: OFF

ENABLE PETSC - Enable petsc support
Default: OFF
Note: See additional information on building with petsc enabled in ??.

PETSC DIR - Path to petsc installation
Default:

PETSC LIBRARIES - advanced option - Semi-colon separated list of PETSc link libraries. Unless
provided by the user, this is autopopulated based on the PETSc installation found in PETSC DIR.
Default:

PETSC INCLUDES - advanced option - Semi-colon separated list of PETSc include directories. Unless
provided by the user, this is autopopulated based on the PETSc installation found in PETSC DIR.
Default:

ENABLE PTHREAD - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

ENABLE RAJA - Enable raja support.
Default: OFF
Note: You need to enable CUDA, HIP, or SYCL in order to build the raja vector module.
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SUNDIALS RAJA BACKENDS - If building SUNDIALS with RAJA support, this sets the RAJA backend
to target. Values supported are CUDA, HIP, or SYCL.
Default: CUDA

ENABLE SUPERLUDIST - Enable SuperLU DIST support
Default: OFF
Note: See additional information on building with SuperLU DIST enabled in A.1.4.

SUPERLUDIST INCLUDE DIR - Path to SuperLU DIST header files (typically SRC directory)

SUPERLUDIST LIBRARY DIR - Path to SuperLU DIST installed library files

SUPERLUDIST LIBRARIES - Semi-colon separated list of libraries needed for SuperLU DIST

SUPERLUDIST OpenMP - Enable sundials support for SuperLU DIST built with OpenMP
Default: OFF
Note: SuperLU DIST must be built with OpenMP support for this option to function properly.
Additionally the environment variable OMP NUM THREADS must be set to the desired number of
threads.

ENABLE SUPERLUMT - Enable superlumt support
Default: OFF
Note: See additional information on building with superlumt enabled in A.1.4.

SUPERLUMT INCLUDE DIR - Path to SuperLU MT header files (typically SRC directory)

SUPERLUMT LIBRARY DIR - Path to SuperLU MT installed library files

SUPERLUMT LIBRARIES - Semi-colon separated list of libraries needed for SuperLU MT

SUPERLUMT THREAD TYPE - Must be set to Pthread or OpenMP
Default: Pthread

ENABLE SYCL - Enable sycl support.
Default: OFF
Note: At present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler.
CMake does not currently support autodetection of SYCL compilers and CMAKE CXX COMPILER

must be set to a valid SYCL compiler i.e., dpcpp in order to build with SYCL support.

ENABLE TRILINOS - Enable Trilinos support (build the Tpetra nvector).
Default: OFF

Trilinos DIR - Path to the Trilinos install directory.
Default:

TRILINOS INTERFACE C COMPILER - advanced option - Set the C compiler for building the Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C COMPILER or MPI C COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE C COMPILER FLAGS - advanced option - Set the C compiler flags for Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C FLAGS if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same flags that were used to build the Trilinos library.
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TRILINOS INTERFACE CXX COMPILER - advanced option - Set the C++ compiler for builing Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX COMPILER or MPI CXX COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER FLAGS - advanced option - Set the C++ compiler flags for Trili-
nos interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX FLAGS if USE XSDK DEFAULTS=ON.
Note: Is is recommended to use the same flags that were used to build the Trilinos library.

SUNDIALS BUILD WITH MONITORING - Build sundials with capabilties for fine-grained monitoring of
solver progress and statistics. This is primarily useful for debugging.
Default: OFF
Note: Building with monitoring may result in minor performance degradation even if monitoring
is not utilized.

SUNDIALS BUILD PACKAGE FUSED KERNELS - Build specialized fused kernels inside cvode.
Default: OFF
Note: This option is currently only available when building with CUDA ENABLE = ON. Building
with fused kernels requires linking to either libsundials cvode fused cuda.lib or libsundials cvode fused stubs.lib,
where the latter provides CPU-only placeholders for the fused routines, in addition to libsundials cvode.lib.

CMAKE CXX STANDARD - The C++ standard to build C++ parts of sundials with.
Default: 11
Note: Options are 99, 11, 14, 17. This option only used when a C++ compiler is required.

SUNDIALS F77 FUNC CASE - advanced option - Specify the case to use in the Fortran name-mangling
scheme, options are: lower or upper
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available or
to override the inferred or default (lower) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC UNDERSCORES must also be set.

SUNDIALS F77 FUNC UNDERSCORES - advanced option - Specify the number of underscores to append
in the Fortran name-mangling scheme, options are: none, one, or two
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available
or to override the inferred or default (one) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC CASE must also be set.

SUNDIALS INDEX TYPE - advanced option - Integer type used for sundials indices. The size must
match the size provided for the
SUNDIALS INDEX SIZE option.
Default:
Note: In past SUNDIALS versions, a user could set this option to INT64 T to use 64-bit integers,
or INT32 T to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are dep-
recated. For SUNDIALS 3.2.0 and up, a user will only need to use the SUNDIALS INDEX SIZE

option in most cases.

SUNDIALS INDEX SIZE - Integer size (in bits) used for indices in sundials, options are: 32 or 64
Default: 64
Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit
integer types are (in order of preference): int64 t, int64, long long, and long. Candidate
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32-bit integers are (in order of preference): int32 t, int, and long. The advanced option,
SUNDIALS INDEX TYPE can be used to provide a type not listed here.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single, or extended
Default: double

SUNDIALS INSTALL CMAKEDIR - Installation directory for the sundials cmake files (relative to CMAKE INSTALL PREFIX).
Default: CMAKE INSTALL PREFIX/cmake/sundials

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

USE XSDK DEFAULTS - Enable xSDK (see for more information) default configuration settings. This
sets CMAKE BUILD TYPE to Debug, SUNDIALS INDEX SIZE to 32 and SUNDIALS PRECISION to dou-
ble.
Default: OFF

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DENABLE_MPI=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/solverdir

%

% make install

%

To disable installation of the examples, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DENABLE_MPI=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/solverdir

%

% make install

%

A.1.4 Working with external Libraries

The sundials suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building sundials as a shared library any external libraries used with
sundials must also be build as a shared library or as a static library compiled with the -fPIC flag. !

https://xsdk.info


444 SUNDIALS Package Installation Procedure

Building with LAPACK

To enable LAPACK, set the ENABLE LAPACK option to ON. If the directory containing the LAPACK li-
brary is in the LD LIBRARY PATH environment variable, CMake will set the LAPACK LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK LIBRARIES variable can be set to the desired
libraries rquired for LAPACK.

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DENABLE_LAPACK=ON \

> -DLAPACK_LIBRARIES=/mylapackpath/lib/libblas.so;/mylapackpath/lib/liblapack.so \

> /home/myname/sundials/solverdir

%

% make install

%

If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-
tions SUNDIALS F77 FUNC CASE and SUNDIALS F77 FUNC UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of sundials were lower and one respectively.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 5.7.2. To enable KLU, set ENABLE KLU to ON, set KLU INCLUDE DIR

to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY.

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 3.1. To enable SuperLU MT, set ENABLE SUPERLUMT to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the vari-
able SUPERLUMT LIBRARIES must be set to a semi-colon separated list of other libraries SuperLU MT
depends on. For example, if SuperLU MT ws build with an external blas library, then include the full
path to the blas library in this list. Additionally, the variable SUPERLUMT THREAD TYPE must be set
to either Pthread or OpenMP.

Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either ENABLE OPENMP or ENABLE PTHREAD set to ON then SuperLU MT should be set to use
the same threading type.!

Building with SuperLU DIST

The SuperLU DIST libraries are available for download from the Lawrence Berkeley National Lab-
oratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu dist. sundials has
been tested with SuperLU DIST 6.1.1. To enable SuperLU DIST, set ENABLE SUPERLUDIST to ON, set
SUPERLUDIST INCLUDE DIR to the include directory of the SuperLU DIST installation (typically SRC),
and set the variable
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SUPERLUDIST LIBRARY DIR to the path to library directory of the SuperLU DIST installation (typ-
ically lib). At the same time, the variable SUPERLUDIST LIBRARIES must be set to a semi-colon
separated list of other libraries SuperLU DIST depends on. For example, if SuperLU DIST was built
with LAPACK, then include the LAPACK library in this list. If SuperLU DIST was built with
OpenMP support, then you may set SUPERLUDIST OPENMP to ON to utilize the OpenMP functionality
of SuperLU DIST.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having ENABLE PTHREAD set to ON then SuperLU DIST should not be set to use OpenMP. !

Building with PETSc

The petsc libraries are available for download from the Argonne National Laboratory website: http://www.mcs.anl.gov/petsc.
sundials has been tested with petsc version 3.10.0–3.14.0. To enable petsc, set ENABLE PETSC to
ON and then set PETSC DIR to the path of the petsc installation. Alternatively, a user can provide
a list of include paths in PETSC INCLUDES, and a list of complete paths to the libraries needed in
PETSC LIBRARIES.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computing.llnl.gov/projects/hypre. sundials has been tested with hypre ver-
sion 2.14.0–2.19.0. To enable hypre, set ENABLE HYPRE to ON, set HYPRE INCLUDE DIR to the include

path of the hypre installation, and set the variable HYPRE LIBRARY DIR to the lib path of the hypre
installation.

Note: sundials must be configured so that SUNDIALS INDEX SIZE (or equivalently, XSDK INDEX SIZE)
equals the precision of HYPRE BigInt in the corresponding hypre installation.

Building with CUDA

sundials cuda modules and examples have been tested with versions 9 through 11.0.2 of the cuda
toolkit. To build them, you need to install the Toolkit and compatible NVIDIA drivers. Both are avail-
able for download from the NVIDIA website: https://developer.nvidia.com/cuda-downloads.
To enable cuda, set ENABLE CUDA to ON. If cuda is installed in a nonstandard location, you may be
prompted to set the variable CUDA TOOLKIT ROOT DIR with your cuda Toolkit installation path. To
enable cuda examples, set EXAMPLES ENABLE CUDA to ON.

Building with RAJA

raja is a performance portability layer developed by Lawrence Livermore National Laboratory and
can be obtained from https://github.com/LLNL/RAJA. sundials raja modules and examples have
been tested with raja up to version 0.14.0. Building sundials raja modules requires a cuda, HIP, or
SYCL enabled raja installation. To enable raja, set ENABLE RAJA to ON, set SUNDIALS RAJA BACKENDS

to the desired backend (CUDA, HIP, or SYCL), and set ENABLE CUDA, ENABLE HIP, or ENABLE SYCL, to
ON depending on the selected backend. If raja is installed in a nonstandard location you will be
prompted to set the variable RAJA DIR with the path to the raja CMake configuration file. To enable
building the raja examples set EXAMPLES ENABLE CXX to ON.

Building with Trilinos

Trilinos is a suite of numerical libraries developed by Sandia National Laboratories. It can be obtained
at https://github.com/trilinos/Trilinos. sundials Trilinos modules and examples have been
tested with Trilinos version 12.14.1 – 12.18.1. To enable Trilinos, set ENABLE TRILINOS to ON. If
Trilinos is installed in a nonstandard location you will be prompted to set the variable Trilinos DIR

with the path to the Trilinos CMake configuration file. It is desireable to build the Trilinos vector
interface with same compiler and options that were used to build Trilinos. CMake will try to find the
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correct compiler settings automatically from the Trilinos configuration file. If that is not successful,
the compilers and options can be manually set with the following CMake variables:

• Trilinos INTERFACE C COMPILER

• Trilinos INTERFACE C COMPILER FLAGS

• Trilinos INTERFACE CXX COMPILER

• Trilinos INTERFACE CXX COMPILER FLAGS

A.1.5 Testing the build and installation

If sundials was configured with EXAMPLES ENABLE <language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile

files if on Linux/Unix) that reference the installed sundials headers and libraries.
Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as

well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc.!

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the solverdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../solverdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir
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(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.

A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/CMAKE INSTALL LIBDIR and instdir/include, respectively. The location can be
changed by setting the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside
under libdir/CMAKE INSTALL LIBDIR, the public header files are further organized into subdirectories
under includedir/include.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.

A.4.1 Using sundials as a Third Party Library in other CMake Projects

The make install command will also install a CMake package configuration file that other CMake
projects can load to get all the information needed to build against sundials. In the consuming
project’s CMake code, the find package command may be used to search for the configuration file,
which will be installed to instdir/SUNDIALS INSTALL CMAKEDIR/SUNDIALSConfig.cmake alongside
a package version file instdir/SUNDIALS INSTALL CMAKEDIR/SUNDIALSConfigVersion.cmake. To-
gether these files contain all the information the consuming project needs to use sundials, including
exported CMake targets. The sundials exported CMake targets follow the same naming conven-
tion as the generated library binaries, e.g. the exported target for cvode is SUNDIALS::cvode. The
CMake code snipped below shows how a consuming project might leverage the SUNDIALS package
configuration file to build against sundials in their own CMake project.

project(MyProject)

# Set the variable SUNDIALS_DIR to the SUNDIALS instdir.

# When using the cmake CLI command, this can be done like so:

# cmake -D SUNDIALS_DIR=/path/to/sundials/installation

find_package(SUNDIALS REQUIRED)

https://cmake.org/cmake/help/v3.12/manual/cmake-packages.7.html#package-configuration-file
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add_executable(myexec main.c)

# Link to SUNDIALS libraries through the exported targets.

# This is just an example, users should link to the targets appropriate

# for their use case.

target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)
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Table A.1: sundials libraries and header files
shared Libraries n/a

Header files sundials/sundials config.h
sundials/sundials fconfig.h
sundials/sundials types.h
sundials/sundials math.h
sundials/sundials nvector.h
sundials/sundials fnvector.h
sundials/sundials matrix.h
sundials/sundials linearsolver.h
sundials/sundials iterative.h
sundials/sundials direct.h
sundials/sundials dense.h
sundials/sundials band.h
sundials/sundials nonlinearsolver.h
sundials/sundials version.h
sundials/sundials mpi types.h
sundials/sundials cuda policies.hpp

nvector serial Libraries libsundials nvecserial.lib
libsundials fnvecserial mod.lib
libsundials fnvecserial.a

Header files nvector/nvector serial.h
Module
files

fnvector serial mod.mod

nvector parallel Libraries libsundials nvecparallel.lib
libsundials fnvecparallel.a
libsundials fnvecparallel mod.lib

Header files nvector/nvector parallel.h
Module
files

fnvector parallel mod.mod

nvector manyvector Libraries libsundials nvecmanyvector.lib
libsundials nvecmanyvector mod.lib

Header files nvector/nvector manyvector.h
Module
files

fnvector manyvector mod.mod

nvector mpimanyvector Libraries libsundials nvecmpimanyvector.lib
libsundials nvecmpimanyvector mod.lib

Header files nvector/nvector mpimanyvector.h
Module
files

fnvector mpimanyvector mod.mod

continued on next page
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nvector mpiplusx Libraries libsundials nvecmpiplusx.lib
libsundials nvecmpiplusx mod.lib

Header files nvector/nvector mpiplusx.h
Module
files

fnvector mpiplusx mod.mod

nvector openmp Libraries libsundials nvecopenmp.lib
libsundials fnvecopenmp mod.lib
libsundials fnvecopenmp.a

Header files nvector/nvector openmp.h
Module
files

fnvector openmp mod.mod

nvector openmpdev Libraries libsundials nvecopenmpdev.lib
Header files nvector/nvector openmpdev.h

nvector pthreads Libraries libsundials nvecpthreads.lib
libsundials fnvecpthreads mod.lib
libsundials fnvecpthreads.a

Header files nvector/nvector pthreads.h
Module
files

fnvector pthreads mod.mod

nvector parhyp Libraries libsundials nvecparhyp.lib
Header files nvector/nvector parhyp.h

nvector petsc Libraries libsundials nvecpetsc.lib
Header files nvector/nvector petsc.h

nvector cuda Libraries libsundials nveccuda.lib
Header files nvector/nvector cuda.h

nvector hip Libraries libsundials nvechip.lib
Header files nvector/nvector hip.h

nvector raja Libraries libsundials nveccudaraja.lib
libsundials nvechipraja.lib

Header files nvector/nvector raja.h
nvector sycl Libraries libsundials nvecsycl.lib

Header files nvector/nvector sycl.h
nvector trilinos Libraries libsundials nvectrilinos.lib

Header files nvector/nvector trilinos.h
nvector/trilinos/SundialsTpetraVectorInterface.hpp
nvector/trilinos/SundialsTpetraVectorKernels.hpp

sunmatrix band Libraries libsundials sunmatrixband.lib
libsundials fsunmatrixband mod.lib
libsundials fsunmatrixband.a

Header files sunmatrix/sunmatrix band.h
Module
files

fsunmatrix band mod.mod

continued on next page
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sunmatrix dense Libraries libsundials sunmatrixdense.lib
libsundials fsunmatrixdense mod.lib
libsundials fsunmatrixdense.a

Header files sunmatrix/sunmatrix dense.h
Module
files

fsunmatrix dense mod.mod

sunmatrix sparse Libraries libsundials sunmatrixsparse.lib
libsundials fsunmatrixsparse mod.lib
libsundials fsunmatrixsparse.a

Header files sunmatrix/sunmatrix sparse.h
Module
files

fsunmatrix sparse mod.mod

sunmatrix slunrloc Libraries libsundials sunmatrixslunrloc.lib
Header files sunmatrix/sunmatrix slunrloc.h

sunlinsol cusparse Libraries libsundials sunmatrixcusparse.lib
Header files sunmatrix/sunmatrix cusparse.h

sunlinsol band Libraries libsundials sunlinsolband.lib
libsundials fsunlinsolband mod.lib
libsundials fsunlinsolband.a

Header files sunlinsol/sunlinsol band.h
Module
files

fsunlinsol band mod.mod

sunlinsol dense Libraries libsundials sunlinsoldense.lib
libsundials fsunlinsoldense mod.lib
libsundials fsunlinsoldense.a

Header files sunlinsol/sunlinsol dense.h
Module
files

fsunlinsol dense mod.mod

sunlinsol klu Libraries libsundials sunlinsolklu.lib
libsundials fsunlinsolklu mod.lib
libsundials fsunlinsolklu.a

Header files sunlinsol/sunlinsol klu.h
Module
files

fsunlinsol klu mod.mod

sunlinsol lapackband Libraries libsundials sunlinsollapackband.lib
libsundials fsunlinsollapackband.a

Header files sunlinsol/sunlinsol lapackband.h
sunlinsol lapackdense Libraries libsundials sunlinsollapackdense.lib

libsundials fsunlinsollapackdense.a
Header files sunlinsol/sunlinsol lapackdense.h

sunlinsol pcg Libraries libsundials sunlinsolpcg.lib
libsundials fsunlinsolpcg mod.lib

continued on next page
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libsundials fsunlinsolpcg.a
Header files sunlinsol/sunlinsol pcg.h
Module
files

fsunlinsol pcg mod.mod

sunlinsol spbcgs Libraries libsundials sunlinsolspbcgs.lib
libsundials fsunlinsolspbcgs mod.lib
libsundials fsunlinsolspbcgs.a

Header files sunlinsol/sunlinsol spbcgs.h
Module
files

fsunlinsol spbcgs mod.mod

sunlinsol spfgmr Libraries libsundials sunlinsolspfgmr.lib
libsundials fsunlinsolspfgmr mod.lib
libsundials fsunlinsolspfgmr.a

Header files sunlinsol/sunlinsol spfgmr.h
Module
files

fsunlinsol spfgmr mod.mod

sunlinsol spgmr Libraries libsundials sunlinsolspgmr.lib
libsundials fsunlinsolspgmr mod.lib
libsundials fsunlinsolspgmr.a

Header files sunlinsol/sunlinsol spgmr.h
Module
files

fsunlinsol spgmr mod.mod

sunlinsol sptfqmr Libraries libsundials sunlinsolsptfqmr.lib
libsundials fsunlinsolsptfqmr mod.lib
libsundials fsunlinsolsptfqmr.a

Header files sunlinsol/sunlinsol sptfqmr.h
Module
files

fsunlinsol sptfqmr mod.mod

sunlinsol superlumt Libraries libsundials sunlinsolsuperlumt.lib
libsundials fsunlinsolsuperlumt.a

Header files sunlinsol/sunlinsol superlumt.h
sunlinsol superludist Libraries libsundials sunlinsolsuperludist.lib

Header files sunlinsol/sunlinsol superludist.h
sunlinsol cusolversp batchqrLibraries libsundials sunlinsolcusolversp.lib

Header files sunlinsol/sunlinsol cusolverp batchqr.h
sunnonlinsol newton Libraries libsundials sunnonlinsolnewton.lib

libsundials fsunnonlinsolnewton mod.lib
libsundials fsunnonlinsolnewton.a

Header files sunnonlinsol/sunnonlinsol newton.h
Module
files

fsunnonlinsol newton mod.mod

sunnonlinsol fixedpoint Libraries libsundials sunnonlinsolfixedpoint.lib
continued on next page
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libsundials fsunnonlinsolfixedpoint.a
libsundials fsunnonlinsolfixedpoint mod.lib

Header files sunnonlinsol/sunnonlinsol fixedpoint.h
Module
files

fsunnonlinsol fixedpoint mod.mod

sunnonlinsol petscsnes Libraries libsundials sunnonlinsolpetscsnes.lib
Header files sunnonlinsol/sunnonlinsol petscsnes.h

cvode Libraries libsundials cvode.lib
libsundials fcvode.a
libsundials fcvode mod.lib

Header files cvode/cvode.h cvode/cvode impl.h
cvode/cvode direct.h cvode/cvode ls.h
cvode/cvode spils.h cvode/cvode bandpre.h
cvode/cvode bbdpre.h

Module
files

fcvode mod.mod

cvodes Libraries libsundials cvodes.lib
libsundials fcvodes mod.lib

Header files cvodes/cvodes.h cvodes/cvodes impl.h
cvodes/cvodes direct.h cvodes/cvodes ls.h
cvodes/cvodes spils.h cvodes/cvodes bandpre.h
cvodes/cvodes bbdpre.h

Module
files

fcvodes mod.mod

arkode Libraries libsundials arkode.lib
libsundials farkode.a
libsundials farkode mod.lib

Header files arkode/arkode.h arkode/arkode impl.h
arkode/arkode ls.h arkode/arkode bandpre.h
arkode/arkode bbdpre.h

Module
files

farkode mod.mod farkode arkstep mod.mod

farkode erkstep mod.mod farkode mristep mod.mod
ida Libraries libsundials ida.lib

libsundials fida.a
libsundials fida mod.lib

Header files ida/ida.h ida/ida impl.h
ida/ida direct.h ida/ida ls.h
ida/ida spils.h ida/ida bbdpre.h

Module
files

fida mod.mod

continued on next page
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idas Libraries libsundials idas.lib
libsundials fidas mod.lib

Header files idas/idas.h idas/idas impl.h
idas/idas direct.h idas/idas ls.h
idas/idas spils.h idas/idas bbdpre.h

Module
files

fidas mod.mod

kinsol Libraries libsundials kinsol.lib
libsundials fkinsol.a
libsundials fkinsol mod.lib

Header files kinsol/kinsol.h kinsol/kinsol impl.h
kinsol/kinsol direct.h kinsol/kinsol ls.h
kinsol/kinsol spils.h kinsol/kinsol bbdpre.h

Module
files

fkinsol mod.mod
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IDAS Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 IDAS input constants

idas main solver module

IDA NORMAL 1 Solver returns at specified output time.
IDA ONE STEP 2 Solver returns after each successful step.
IDA SIMULTANEOUS 1 Simultaneous corrector forward sensitivity method.
IDA STAGGERED 2 Staggered corrector forward sensitivity method.
IDA CENTERED 1 Central difference quotient approximation (2nd order) of the

sensitivity RHS.
IDA FORWARD 2 Forward difference quotient approximation (1st order) of the

sensitivity RHS.
IDA YA YDP INIT 1 Compute ya and ẏd, given yd.
IDA Y INIT 2 Compute y, given ẏ.

idas adjoint solver module

IDA HERMITE 1 Use Hermite interpolation.
IDA POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 IDAS output constants

idas main solver module
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IDA SUCCESS 0 Successful function return.
IDA TSTOP RETURN 1 IDASolve succeeded by reaching the specified stopping point.
IDA ROOT RETURN 2 IDASolve succeeded and found one or more roots.
IDA WARNING 99 IDASolve succeeded but an unusual situation occurred.
IDA TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
IDA TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the

user for some internal step.
IDA ERR FAIL -3 Error test failures occurred too many times during one inter-

nal time step or minimum step size was reached.
IDA CONV FAIL -4 Convergence test failures occurred too many times during one

internal time step or minimum step size was reached.
IDA LINIT FAIL -5 The linear solver’s initialization function failed.
IDA LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
IDA LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
IDA RES FAIL -8 The user-provided residual function failed in an unrecoverable

manner.
IDA REP RES FAIL -9 The user-provided residual function repeatedly returned a re-

coverable error flag, but the solver was unable to recover.
IDA RTFUNC FAIL -10 The rootfinding function failed in an unrecoverable manner.
IDA CONSTR FAIL -11 The inequality constraints were violated and the solver was

unable to recover.
IDA FIRST RES FAIL -12 The user-provided residual function failed recoverably on the

first call.
IDA LINESEARCH FAIL -13 The line search failed.
IDA NO RECOVERY -14 The residual function, linear solver setup function, or linear

solver solve function had a recoverable failure, but IDACalcIC
could not recover.

IDA NLS INIT FAIL -15 The nonlinear solver’s init routine failed.
IDA NLS SETUP FAIL -16 The nonlinear solver’s setup routine failed.
IDA MEM NULL -20 The ida mem argument was NULL.
IDA MEM FAIL -21 A memory allocation failed.
IDA ILL INPUT -22 One of the function inputs is illegal.
IDA NO MALLOC -23 The idas memory was not allocated by a call to IDAInit.
IDA BAD EWT -24 Zero value of some error weight component.
IDA BAD K -25 The k-th derivative is not available.
IDA BAD T -26 The time t is outside the last step taken.
IDA BAD DKY -27 The vector argument where derivative should be stored is

NULL.
IDA NO QUAD -30 Quadratures were not initialized.
IDA QRHS FAIL -31 The user-provided right-hand side function for quadratures

failed in an unrecoverable manner.
IDA FIRST QRHS ERR -32 The user-provided right-hand side function for quadratures

failed in an unrecoverable manner on the first call.
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IDA REP QRHS ERR -33 The user-provided right-hand side repeatedly returned a re-
coverable error flag, but the solver was unable to recover.

IDA NO SENS -40 Sensitivities were not initialized.
IDA SRES FAIL -41 The user-provided sensitivity residual function failed in an

unrecoverable manner.
IDA REP SRES ERR -42 The user-provided sensitivity residual function repeatedly re-

turned a recoverable error flag, but the solver was unable to
recover.

IDA BAD IS -43 The sensitivity identifier is not valid.
IDA NO QUADSENS -50 Sensitivity-dependent quadratures were not initialized.
IDA QSRHS FAIL -51 The user-provided sensitivity-dependent quadrature right-

hand side function failed in an unrecoverable manner.
IDA FIRST QSRHS ERR -52 The user-provided sensitivity-dependent quadrature right-

hand side function failed in an unrecoverable manner on the
first call.

IDA REP QSRHS ERR -53 The user-provided sensitivity-dependent quadrature right-
hand side repeatedly returned a recoverable error flag, but
the solver was unable to recover.

idas adjoint solver module

IDA NO ADJ -101 The combined forward-backward problem has not been ini-
tialized.

IDA NO FWD -102 IDASolveF has not been previously called.
IDA NO BCK -103 No backward problem was specified.
IDA BAD TB0 -104 The desired output for backward problem is outside the in-

terval over which the forward problem was solved.
IDA REIFWD FAIL -105 No checkpoint is available for this hot start.
IDA FWD FAIL -106 IDASolveB failed because IDASolve was unable to store data

between two consecutive checkpoints.
IDA GETY BADT -107 Wrong time in interpolation function.

idals linear solver interface

IDALS SUCCESS 0 Successful function return.
IDALS MEM NULL -1 The ida mem argument was NULL.
IDALS LMEM NULL -2 The idals linear solver has not been initialized.
IDALS ILL INPUT -3 The idals solver is not compatible with the current nvector

module, or an input value was illegal.
IDALS MEM FAIL -4 A memory allocation request failed.
IDALS PMEM NULL -5 The preconditioner module has not been initialized.
IDALS JACFUNC UNRECVR -6 The Jacobian function failed in an unrecoverable manner.
IDALS JACFUNC RECVR -7 The Jacobian function had a recoverable error.
IDALS SUNMAT FAIL -8 An error occurred with the current sunmatrix module.
IDALS SUNLS FAIL -9 An error occurred with the current sunlinsol module.
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IDALS NO ADJ -101 The combined forward-backward problem has not been ini-
tialized.

IDALS LMEMB NULL -102 The linear solver was not initialized for the backward phase.
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SUNDIALS Release History

Table C.1: Release History

Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL

Sep 2021 5.8.0 4.8.0 5.8.0 5.8.0 5.8.0 4.8.0 5.8.0
Jan 2021 5.7.0 4.7.0 5.7.0 5.7.0 5.7.0 4.7.0 5.7.0
Dec 2020 5.6.1 4.6.1 5.6.1 5.6.1 5.6.1 4.6.1 5.6.1
Dec 2020 5.6.0 4.6.0 5.6.0 5.6.0 5.6.0 4.6.0 5.6.0
Oct 2020 5.5.0 4.5.0 5.5.0 5.5.0 5.5.0 4.5.0 5.5.0
Sep 2020 5.4.0 4.4.0 5.4.0 5.4.0 5.4.0 4.4.0 5.4.0
May 2020 5.3.0 4.3.0 5.3.0 5.3.0 5.3.0 4.3.0 5.3.0
Mar 2020 5.2.0 4.2.0 5.2.0 5.2.0 5.2.0 4.2.0 5.2.0
Jan 2020 5.1.0 4.1.0 5.1.0 5.1.0 5.1.0 4.1.0 5.1.0
Oct 2019 5.0.0 4.0.0 5.0.0 5.0.0 5.0.0 4.0.0 5.0.0
Feb 2019 4.1.0 3.1.0 4.1.0 4.1.0 4.1.0 3.1.0 4.1.0
Jan 2019 4.0.2 3.0.2 4.0.2 4.0.2 4.0.2 3.0.2 4.0.2
Dec 2018 4.0.1 3.0.1 4.0.1 4.0.1 4.0.1 3.0.1 4.0.1
Dec 2018 4.0.0 3.0.0 4.0.0 4.0.0 4.0.0 3.0.0 4.0.0
Oct 2018 3.2.1 2.2.1 3.2.1 3.2.1 3.2.1 2.2.1 3.2.1
Sep 2018 3.2.0 2.2.0 3.2.0 3.2.0 3.2.0 2.2.0 3.2.0
Jul 2018 3.1.2 2.1.2 3.1.2 3.1.2 3.1.2 2.1.2 3.1.2
May 2018 3.1.1 2.1.1 3.1.1 3.1.1 3.1.1 2.1.1 3.1.1
Nov 2017 3.1.0 2.1.0 3.1.0 3.1.0 3.1.0 2.1.0 3.1.0
Sep 2017 3.0.0 2.0.0 3.0.0 3.0.0 3.0.0 2.0.0 3.0.0
Sep 2016 2.7.0 1.1.0 2.9.0 2.9.0 2.9.0 1.3.0 2.9.0
Aug 2015 2.6.2 1.0.2 2.8.2 2.8.2 2.8.2 1.2.2 2.8.2
Mar 2015 2.6.1 1.0.1 2.8.1 2.8.1 2.8.1 1.2.1 2.8.1

continued on next page
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continued from last page

Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL

Mar 2015 2.6.0 1.0.0 2.8.0 2.8.0 2.8.0 1.2.0 2.8.0
Mar 2012 2.5.0 – 2.7.0 2.7.0 2.7.0 1.1.0 2.7.0
May 2009 2.4.0 – 2.6.0 2.6.0 2.6.0 1.0.0 2.6.0
Nov 2006 2.3.0 – 2.5.0 2.5.0 2.5.0 – 2.5.0
Mar 2006 2.2.0 – 2.4.0 2.4.0 2.4.0 – 2.4.0
May 2005 2.1.1 – 2.3.0 2.3.0 2.3.0 – 2.3.0
Apr 2005 2.1.0 – 2.3.0 2.2.0 2.3.0 – 2.3.0
Mar 2005 2.0.2 – 2.2.2 2.1.2 2.2.2 – 2.2.2
Jan 2005 2.0.1 – 2.2.1 2.1.1 2.2.1 – 2.2.1
Dec 2004 2.0.0 – 2.2.0 2.1.0 2.2.0 – 2.2.0
Jul 2002 1.0.0 – 2.0.0 1.0.0 2.0.0 – 2.0.0
Mar 2002 – – 1.0.03 – – – –
Feb 1999 – – – – 1.0.04 – –
Aug 1998 – – – – – – 1.0.05

Jul 1997 – – 1.0.02 – – – –
Sep 1994 – – 1.0.01 – – – –
1cvode written, 2pvode written, 3cvode and pvode combined, 4ida written, 5kinsol written
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ARKStepGetCurrentGamma, 330
ARKStepGetNonlinearSystemData, 330

BIG REAL, 38, 188, 195
booleantype, 38

CVodeGetCurrentGamma, 330
CVodeGetNonlinearSystemData, 330

eh data, 83
error control

sensitivity variables, 27
error messages, 52, 113, 145

redirecting, 52
user-defined handler, 52, 83
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fnvector serial mod, 208
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FSUNBANDLINSOLINIT, 337
FSUNDENSELINSOLINIT, 334
FSUNKLUINIT, 346
FSUNKLUREINIT, 347
FSUNKLUSETORDERING, 347
FSUNLAPACKBANDINIT, 341
FSUNLAPACKDENSEINIT, 339
fsunlinsol band mod, 336
fsunlinsol dense mod, 334
fsunlinsol klu mod, 346
fsunlinsol pcg mod, 393
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FSUNMASSKLUSETORDERING, 348
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FSUNMASSPCGINIT, 394
FSUNMASSPCGSETMAXL, 395
FSUNMASSPCGSETPRECTYPE, 394
FSUNMASSSPBCGSINIT, 381
FSUNMASSSPBCGSSETMAXL, 382
FSUNMASSSPBCGSSETPRECTYPE, 381
FSUNMASSSPFGMRINIT, 373
FSUNMASSSPFGMRSETGSTYPE, 374
FSUNMASSSPFGMRSETMAXRS, 375
FSUNMASSSPFGMRSETPRECTYPE, 375
FSUNMASSSPGMRINIT, 366
FSUNMASSSPGMRSETGSTYPE, 366
FSUNMASSSPGMRSETMAXRS, 367
FSUNMASSSPGMRSETPRECTYPE, 367
FSUNMASSSPTFQMRINIT, 387
FSUNMASSSPTFQMRSETMAXL, 388
FSUNMASSSPTFQMRSETPRECTYPE, 388
FSUNMASSSUPERLUMTINIT, 355
FSUNMASSUPERLUMTSETORDERING, 356
fsunmatrix band mod, 293
fsunmatrix dense mod, 287
fsunmatrix sparse mod, 300
FSUNNEWTONINIT, 418
fsunnonlinsol newton mod, 417
FSUNPCGINIT, 394
FSUNPCGSETMAXL, 395
FSUNPCGSETPRECTYPE, 394
FSUNSPBCGSINIT, 380
FSUNSPBCGSSETMAXL, 382
FSUNSPBCGSSETPRECTYPE, 381
FSUNSPFGMRINIT, 373
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FSUNSPFGMRSETMAXRS, 375
FSUNSPFGMRSETPRECTYPE, 374
FSUNSPGMRINIT, 366
FSUNSPGMRSETGSTYPE, 366
FSUNSPGMRSETMAXRS, 367
FSUNSPGMRSETPRECTYPE, 367
FSUNSPTFQMRINIT, 387
FSUNSPTFQMRSETMAXL, 388
FSUNSPTFQMRSETPRECTYPE, 387
FSUNSUPERLUMTINIT, 355
FSUNSUPERLUMTSETORDERING, 355

half-bandwidths, 100
header files, 39, 99

ida/ida ls.h, 39
IDA BAD DKY, 67, 93, 111–113, 124, 125
IDA BAD EWT, 49
IDA BAD IS, 112, 113, 124, 125
IDA BAD ITASK, 144
IDA BAD K, 67, 93, 112, 113, 124, 125
IDA BAD T, 67, 93, 112, 113, 124, 125
IDA BAD TB0, 138–140
IDA BAD TBOUT, 144
IDA BCKMEM NULL, 144
IDA CENTERED, 114
IDA CONSTR FAIL, 49, 51
IDA CONV FAIL, 50, 51
IDA CONV FAILURE, 137, 144
IDA ERR FAIL, 51
IDA ERR FAILURE, 137, 144
IDA FIRST QRHS ERR, 92, 96
IDA FIRST QSRHS ERR, 123, 129
IDA FIRST RES FAIL, 49, 119
IDA FORWARD, 114
IDA FWD FAIL, 144
IDA GETY BADT, 152
IDA HERMITE, 135
IDA ILL INPUT, 44, 45, 48, 49, 51, 54–57, 59, 64–

66, 76, 82, 94, 107–111, 114, 119, 122,
126, 135, 137–140, 142, 144, 145, 153–
155

IDA LINESEARCH FAIL, 50
IDA LINIT FAIL, 49, 51
IDA LSETUP FAIL, 49, 51, 137, 144, 160, 161, 170
IDA LSOLVE FAIL, 49, 51, 137
IDA MEM FAIL, 44, 56, 75, 91, 107, 108, 115, 118,

122, 135, 137, 138, 154, 155
IDA MEM NULL, 44–46, 48, 49, 51, 52, 54–59, 64–

67, 70–77, 82, 91–96, 107–119, 122, 124–
128, 136, 138–140, 142, 144, 145, 152–
155, 414

IDA NO ADJ, 135–140, 142–145, 153–155
IDA NO BCK, 144

IDA NO FWD, 144
IDA NO MALLOC, 45, 46, 49, 82, 137–140
IDA NO QUAD, 92–96, 126, 155
IDA NO QUADSENS, 122–128
IDA NO RECOVERY, 49
IDA NO SENS, 108, 109, 111–114, 116–119, 122,

124, 125
IDA NORMAL, 51, 132, 136, 144
IDA ONE STEP, 51, 132, 136, 144
IDA POLYNOMIAL, 135
IDA QRHS FAIL, 92, 96, 129
IDA QRHSFUNC FAIL, 158, 159
IDA QSRHS FAIL, 123
IDA REIFWD FAIL, 144
IDA REP QRHS ERR, 92
IDA REP QSRHS ERR, 123
IDA REP RES ERR, 51
IDA REP SRES ERR, 111
IDA RES FAIL, 49, 51
IDA RESFUNC FAIL, 156, 157
IDA ROOT RETURN, 51, 137
IDA RTFUNC FAIL, 51, 84
IDA SIMULTANEOUS, 35, 107
IDA SOLVE FAIL, 144
IDA SRES FAIL, 111, 119
IDA STAGGERED, 35, 107
IDA SUCCESS, 44–46, 48, 49, 51, 52, 54–59, 64–

67, 76, 77, 82, 91–96, 107–118, 122–128,
135–140, 142, 144, 145, 152, 154, 155

IDA TOO MUCH ACC, 51, 137, 144
IDA TOO MUCH WORK, 51, 137, 144
IDA TSTOP RETURN, 51, 137
IDA WARNING, 83
IDA Y INIT, 49
IDA YA YDP INIT, 49
IDAAdjFree, 135
IDAAdjInit, 132, 135
IDAAdjReInit, 135
IDAAdjSetNoSensi, 136
idabbdpre preconditioner

description, 97
optional output, 101–102
usage, 99–100
usage with adjoint module, 167–170
user-callable functions, 100–101, 168–169
user-supplied functions, 97–99, 169–170

IDABBDPrecGetNumGfnEvals, 102
IDABBDPrecGetWorkSpace, 101
IDABBDPrecInit, 100
IDABBDPrecInitB, 168
IDABBDPrecReInit, 101
IDABBDPrecReInitB, 169
IDACalcIC, 49
IDACalcICB, 142
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IDACalcICBS, 142, 143
IDACreate, 44
IDACreateB, 132, 138
IDADlsGetLastFlag, 81
IDADlsGetNumJacEvals, 78
IDADlsGetNumRhsEvals, 78
IDADlsGetReturnFlagName, 81
IDADlsGetWorkspace, 77
IDADlsJacFn, 86
IDADlsJacFnB, 160
IDADlsJacFnBS, 161
IDADlsSetJacFn, 59
IDADlsSetJacFnB, 146
IDADlsSetJacFnBS, 146
IDADlsSetLinearSolver, 48
IDADlsSetLinearSolverB, 141
IDAErrHandlerFn, 83
IDAEwtFn, 84
IDAFree, 43, 45
IDAGetActualInitStep, 73
IDAGetAdjCheckPointsInfo, 152
IDAGetAdjIDABmem, 152
IDAGetAdjY, 152
IDAGetB, 145
IDAGetConsistentIC, 76
IDAGetConsistentICB, 153
IDAGetCurrentCj, 330, 410
IDAGetCurrentOrder, 72
IDAGetCurrentStep, 72
IDAGetCurrentTime, 73
IDAGetCurrentY, 411
IDAGetCurrentYp, 411
IDAGetCurrentYpSens, 411
IDAGetCurrentYSens, 411
IDAGetDky, 67
IDAGetErrWeights, 73
IDAGetEstLocalErrors, 74
IDAGetIntegratorStats, 74
IDAGetLastLinFlag, 80
IDAGetLastOrder, 72
IDAGetLastStep, 72
IDAGetLinReturnFlagName, 81
IDAGetLinWorkSpace, 77
IDAGetNonlinearSystemData, 3, 330, 412
IDAGetNonlinearSystemDataSens, 413
IDAGetNonlinSolvStats, 75
IDAGetNumBacktrackOps, 76
IDAGetNumErrTestFails, 71
IDAGetNumGEvals, 77
IDAGetNumJacEvals, 78
IDAGetNumJtimesEvals, 80
IDAGetNumJTSetupEvals, 80
IDAGetNumLinConvFails, 79
IDAGetNumLinIters, 78

IDAGetNumLinResEvals, 78
IDAGetNumLinSolvSetups, 71
IDAGetNumNonlinSolvConvFails, 75
IDAGetNumNonlinSolvIters, 75
IDAGetNumPrecEvals, 79
IDAGetNumPrecSolves, 79
IDAGetNumResEvals, 71
IDAGetNumResEvalsSEns, 116
IDAGetNumSteps, 71
IDAGetQuad, 93, 155
IDAGetQuadB, 134, 155
IDAGetQuadDky, 93
IDAGetQuadErrWeights, 95
IDAGetQuadNumErrTestFails, 95
IDAGetQuadNumRhsEvals, 95
IDAGetQuadSens, 123
IDAGetQuadSens1, 124
IDAGetQuadSensDky, 123, 124
IDAGetQuadSensDky1, 124
IDAGetQuadSensErrWeights, 127
IDAGetQuadSensNumErrTestFails, 127
IDAGetQuadSensNumRhsEvals, 127
IDAGetQuadSensStats, 128
IDAGetQuadStats, 96
IDAGetReturnFlagName, 75
IDAGetRootInfo, 76
IDAGetSens, 106, 111
IDAGetSens1, 106, 112
IDAGetSensConsistentIC, 118
IDAGetSensDky, 106, 112
IDAGetSensDky1, 106, 113
IDAGetSensErrWeights, 117
IDAGetSensNonlinSolvStats, 118
IDAGetSensNumErrTestFails, 116
IDAGetSensNumLinSolvSetups, 116
IDAGetSensNumNonlinSolvConvFails, 118
IDAGetSensNumNonlinSolvIters, 117
IDAGetSensNumResEvals, 115
IDAGetSensStats, 117
IDAGetTolScaleFactor, 73
IDAGetWorkSpace, 70
IDAInit, 44, 81
IDAInitB, 133, 138
IDAInitBS, 133, 139
idals linear solver interface

convergence test, 63
Jacobian approximation used by, 59, 60
memory requirements, 77
optional input, 59–64, 146–151
optional output, 77–81
preconditioner setup function, 62, 89
preconditioner setup function (backward), 166
preconditioner solve function, 62, 88
preconditioner solve function (backward), 165
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IDALS ILL INPUT, 48, 60–63, 100, 141, 146–151,
168, 169

IDALS JACFUNC RECVR, 160, 161
IDALS JACFUNC UNRECVR, 160, 161
IDALS LMEM NULL, 59–63, 77–80, 100, 101, 146–

151, 168, 169
IDALS MEM FAIL, 48, 100, 141, 168, 169
IDALS MEM NULL, 48, 59–63, 77–80, 100–102, 141,

146–151, 168, 169
IDALS NO ADJ, 141, 142, 146–151
IDALS PMEM NULL, 101, 102, 169
IDALS SUCCESS, 48, 59–63, 77–80, 100–102, 141,

146–151, 168, 169
IDALS SUNLS FAIL, 48, 61, 63
IDALsJacFn, 84
IDALsJacFnB, 159
IDALsJacFnBS, 159
IDALsJacTimesSetupFn, 87
IDALsJacTimesSetupFnB, 163
IDALsJacTimesSetupFnBS, 163
IDALsJacTimesVecFn, 86
IDALsJacTimesVecFnB, 161
IDALsJacTimesVecFnBS, 161
IDALsPrecSetupFn, 89
IDALsPrecSolveFn, 88
IDAQuadFree, 92
IDAQuadInit, 91, 92
IDAQuadInitB, 153
IDAQuadInitBS, 154
IDAQuadReInit, 92
IDAQuadReInitB, 154
IDAQuadRhsFn, 91, 96
IDAQuadRhsFnB, 154, 157
IDAQuadRhsFnBS, 154, 158
IDAQuadSensEEtolerances, 126, 127
IDAQuadSensFree, 123
IDAQuadSensInit, 121, 122
IDAQuadSensReInit, 122
IDAQuadSensRhsFn, 121, 128
IDAQuadSensSStolerances, 126
IDAQuadSensSVtolerances, 126
IDAQuadSStolerances, 94
IDAQuadSVtolerances, 94
IDAReInit, 81, 82
IDAReInitB, 139
IDAResFn, 44, 62, 82, 149
IDAResFnB, 138, 156
IDAResFnBS, 139, 156
IDARootFn, 84
IDARootInit, 50
idas

motivation for writing in C, 2
package structure, 34
relationship to ida, 1–2

idas linear solver interface
idals, 47, 141

idas linear solvers
header files, 39
implementation details, 36
nvector compatibility, 37
selecting one, 47
usage with adjoint module, 141

idas nonlinear solvers
usage with adjoint module, 141

ida linear solver interfaces, 35
idas/idas.h, 39
IDASensEEtolerances, 109
IDASensFree, 108
IDASensInit, 105–107
IDASensReInit, 107
IDASensResFn, 107, 119
IDASensSStolerances, 109
IDASensSVtolerances, 109
IDASensToggleOff, 108
IDASetConstraints, 58
IDASetEpsLin, 63
IDASetEpsLinB, 150
IDASetErrFile, 52
IDASetErrHandlerFn, 54
IDASetId, 58
IDASetIncrementFactor, 61
IDASetIncrementFactorB, 148
IDASetInitStep, 55
IDASetJacFn, 59
IDASetJacFnB, 146
IDASetJacFnBS, 146
IDASetJacTimes, 60
IDASetJacTimesB, 147
IDASetJacTimesBS, 148
IDASetJacTimesResFn, 62
IDASetJacTimesResFnB, 149
IDASetLinearSolutionScaling, 60
IDASetLinearSolver, 42, 47, 84, 283
IDASetLinearSolverB, 133, 141, 159, 168
IDASetLineSearchOffIC, 66
IDASetLSNormFactor, 63
IDASetLSNormFactorB, 151
IDASetMaxBacksIC, 65
IDASetMaxConvFails, 57
IDASetMaxErrTestFails, 56
IDASetMaxNonlinIters, 56
IDASetMaxNumItersIC, 65
IDASetMaxNumJacsIC, 65
IDASetMaxNumSteps, 55
IDASetMaxNumStepsIC, 64
IDASetMaxOrd, 54
IDASetMaxStep, 55
IDASetNlsResFn, 57
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IDASetNoInactiveRootWarn, 67
IDASetNonlinConvCoef, 57
IDASetNonlinConvCoefIC, 64
IDASetNonLinearSolver, 48
IDASetNonlinearSolver, 42, 48, 110, 111
IDASetNonLinearSolverB, 142
IDASetNonlinearSolverB, 134, 141
IDASetNonLinearSolverSensSim, 110
IDASetNonlinearSolverSensSim, 110
IDASetNonLinearSolverSensStg, 110
IDASetNonlinearSolverSensStg, 110
IDASetPreconditioner, 62
IDASetPrecSolveFnB, 149
IDASetPrecSolveFnBS, 150
IDASetQuadErrCon, 94
IDASetQuadSensErrCon, 125
IDASetRootDirection, 66
IDASetSensDQMethod, 114
IDASetSensErrCon, 114
IDASetSensMaxNonlinIters, 115
IDASetSensParams, 113
IDASetStepToleranceIC, 66
IDASetStopTime, 56
IDASetSuppressAlg, 58
IDASetUserData, 54
IDASolve, 42, 50, 127
IDASolveB, 134, 143, 144
IDASolveF, 132, 136
IDASpilsGetLastFlag, 81
IDASpilsGetNumConvFails, 79
IDASpilsGetNumJtimesEvals, 80
IDASpilsGetNumJTSetupEvals, 80
IDASpilsGetNumLinIters, 79
IDASpilsGetNumPrecEvals, 79
IDASpilsGetNumPrecSolves, 80
IDASpilsGetNumRhsEvals, 78
IDASpilsGetReturnFlagName, 81
IDASpilsGetWorkspace, 77
IDASpilsJacTimesSetupFn, 88
IDASpilsJacTimesSetupFnB, 164
IDASpilsJacTimesSetupFnBS, 164
IDASpilsJacTimesVecFn, 87
IDASpilsJacTimesVecFnB, 162
IDASpilsJacTimesVecFnBS, 163
IDASpilsPrecSetupFn, 90
IDASpilsPrecSetupFnB, 167
IDASpilsPrecSetupFnBS, 167
IDASpilsPrecSolveFn, 89
IDASpilsPrecSolveFnB, 165
IDASpilsPrecSolveFnBS, 166
IDASpilsSetEpsLin, 63
IDASpilsSetEpsLinB, 151
IDASpilsSetIncrementFactor, 61
IDASpilsSetIncrementFactorB, 148

IDASpilsSetJacTimes, 61
IDASpilsSetJacTimesB, 147
IDASpilsSetJacTimesBS, 148
IDASpilsSetLinearSolver, 48
IDASpilsSetLinearSolverB, 141
IDASpilsSetPreconditioner, 63
IDASpilsSetPreconditionerB, 150
IDASpilsSetPreconditionerBS, 150
IDASStolerances, 45
IDASStolerancesB, 140
IDASVtolerances, 45
IDASVtolerancesB, 140
IDAWFtolerances, 46
itask, 51, 136

Jacobian approximation function
difference quotient, 59
Jacobian times vector

alternative-res, 61
alternative-res (backward), 149
difference quotient, 60
increment, 61
increment (backward), 148
user-supplied, 60, 86–87

Jacobian-vector product
user-supplied (backward), 147, 161

Jacobian-vector setup
user-supplied, 87–88
user-supplied (backward), 163

user-supplied, 59, 84–86
user-supplied (backward), 146, 159

Linear solution scaling function
user-supplied, 60
user-supplied (backward), 147

maxord, 81
memory requirements

idabbdpre preconditioner, 101
idals linear solver interface, 77
idas solver, 91, 107, 122
idas solver, 70

MRIStepGetCurrentGamma, 330

N VCloneVectorArray, 196
N VCloneVectorArray OpenMP, 215
N VCloneVectorArray OpenMPDEV, 256
N VCloneVectorArray Parallel, 210
N VCloneVectorArray ParHyp, 225
N VCloneVectorArray Petsc, 229
N VCloneVectorArray Pthreads, 221
N VCloneVectorArray Serial, 205
N VCloneVectorArrayEmpty, 196
N VCloneVectorArrayEmpty OpenMP, 216
N VCloneVectorArrayEmpty OpenMPDEV, 256
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N VCloneVectorArrayEmpty Parallel, 210
N VCloneVectorArrayEmpty ParHyp, 226
N VCloneVectorArrayEmpty Petsc, 229
N VCloneVectorArrayEmpty Pthreads, 221
N VCloneVectorArrayEmpty Serial, 205
N VCopyFromDevice Cuda, 235
N VCopyFromDevice Hip, 241
N VCopyFromDevice OpenMPDEV, 257
N VCopyFromDevice Raja, 247
N VCopyFromDevice Sycl, 251
N VCopyOps, 196
N VCopyToDevice Cuda, 234
N VCopyToDevice Hip, 240
N VCopyToDevice OpenMPDEV, 257
N VCopyToDevice Raja, 247
N VCopyToDevice Sycl, 251
N VDestroyVectorArray, 196
N VDestroyVectorArray OpenMP, 216
N VDestroyVectorArray OpenMPDEV, 257
N VDestroyVectorArray Parallel, 210
N VDestroyVectorArray ParHyp, 226
N VDestroyVectorArray Petsc, 229
N VDestroyVectorArray Pthreads, 221
N VDestroyVectorArray Serial, 205
N Vector, 39, 181, 198
N VEnableConstVectorArray Cuda, 236
N VEnableConstVectorArray Hip, 242
N VEnableConstVectorArray ManyVector, 264
N VEnableConstVectorArray MPIManyVector, 269
N VEnableConstVectorArray OpenMP, 217
N VEnableConstVectorArray OpenMPDEV, 258
N VEnableConstVectorArray Parallel, 212
N VEnableConstVectorArray ParHyp, 227
N VEnableConstVectorArray Petsc, 230
N VEnableConstVectorArray Pthreads, 223
N VEnableConstVectorArray Raja, 248
N VEnableConstVectorArray Serial, 207
N VEnableConstVectorArray Sycl, 252
N VEnableDotProdMulti Cuda, 235
N VEnableDotProdMulti Hip, 241
N VEnableDotProdMulti ManyVector, 264
N VEnableDotProdMulti MPIManyVector, 269
N VEnableDotProdMulti OpenMP, 217
N VEnableDotProdMulti OpenMPDEV, 258
N VEnableDotProdMulti Parallel, 212
N VEnableDotProdMulti ParHyp, 227
N VEnableDotProdMulti Petsc, 230
N VEnableDotProdMulti Pthreads, 222
N VEnableDotProdMulti Serial, 206
N VEnableFusedOps Cuda, 235
N VEnableFusedOps Hip, 241
N VEnableFusedOps ManyVector, 263
N VEnableFusedOps MPIManyVector, 268
N VEnableFusedOps OpenMP, 216

N VEnableFusedOps OpenMPDEV, 257
N VEnableFusedOps Parallel, 211
N VEnableFusedOps ParHyp, 226
N VEnableFusedOps Petsc, 230
N VEnableFusedOps Pthreads, 222
N VEnableFusedOps Raja, 247
N VEnableFusedOps Serial, 206
N VEnableFusedOps Sycl, 252
N VEnableLinearCombination Cuda, 235
N VEnableLinearCombination Hip, 241
N VEnableLinearCombination ManyVector, 263
N VEnableLinearCombination MPIManyVector, 268
N VEnableLinearCombination OpenMP, 217
N VEnableLinearCombination OpenMPDEV, 258
N VEnableLinearCombination Parallel, 211
N VEnableLinearCombination ParHyp, 226
N VEnableLinearCombination Petsc, 230
N VEnableLinearCombination Pthreads, 222
N VEnableLinearCombination Raja, 247
N VEnableLinearCombination Serial, 206
N VEnableLinearCombination Sycl, 252
N VEnableLinearCombinationVectorArray Cuda,

236
N VEnableLinearCombinationVectorArray Hip, 242
N VEnableLinearCombinationVectorArray OpenMP,

218
N VEnableLinearCombinationVectorArray OpenMPDEV,

259
N VEnableLinearCombinationVectorArray Parallel,

213
N VEnableLinearCombinationVectorArray ParHyp,

228
N VEnableLinearCombinationVectorArray Petsc,

231
N VEnableLinearCombinationVectorArray Pthreads,

224
N VEnableLinearCombinationVectorArray Raja,

248
N VEnableLinearCombinationVectorArray Serial,

207
N VEnableLinearCombinationVectorArray Sycl,

253
N VEnableLinearSumVectorArray Cuda, 236
N VEnableLinearSumVectorArray Hip, 242
N VEnableLinearSumVectorArray ManyVector, 264
N VEnableLinearSumVectorArray MPIManyVector,

269
N VEnableLinearSumVectorArray OpenMP, 217
N VEnableLinearSumVectorArray OpenMPDEV, 258
N VEnableLinearSumVectorArray Parallel, 212
N VEnableLinearSumVectorArray ParHyp, 227
N VEnableLinearSumVectorArray Petsc, 230
N VEnableLinearSumVectorArray Pthreads, 223
N VEnableLinearSumVectorArray Raja, 248
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N VEnableLinearSumVectorArray Serial, 206
N VEnableLinearSumVectorArray Sycl, 252
N VEnableScaleAddMulti Cuda, 235
N VEnableScaleAddMulti Hip, 241
N VEnableScaleAddMulti ManyVector, 263
N VEnableScaleAddMulti MPIManyVector, 268
N VEnableScaleAddMulti OpenMP, 217
N VEnableScaleAddMulti OpenMPDEV, 258
N VEnableScaleAddMulti Parallel, 211
N VEnableScaleAddMulti ParHyp, 226
N VEnableScaleAddMulti Petsc, 230
N VEnableScaleAddMulti Pthreads, 222
N VEnableScaleAddMulti Raja, 248
N VEnableScaleAddMulti Serial, 206
N VEnableScaleAddMulti Sycl, 252
N VEnableScaleAddMultiVectorArray Cuda, 236
N VEnableScaleAddMultiVectorArray Hip, 242
N VEnableScaleAddMultiVectorArray OpenMP, 218
N VEnableScaleAddMultiVectorArray OpenMPDEV,

259
N VEnableScaleAddMultiVectorArray Parallel,

213
N VEnableScaleAddMultiVectorArray ParHyp, 227
N VEnableScaleAddMultiVectorArray Petsc, 231
N VEnableScaleAddMultiVectorArray Pthreads,

223
N VEnableScaleAddMultiVectorArray Raja, 248
N VEnableScaleAddMultiVectorArray Serial, 207
N VEnableScaleAddMultiVectorArray Sycl, 253
N VEnableScaleVectorArray Cuda, 236
N VEnableScaleVectorArray Hip, 242
N VEnableScaleVectorArray ManyVector, 264
N VEnableScaleVectorArray MPIManyVector, 269
N VEnableScaleVectorArray OpenMP, 217
N VEnableScaleVectorArray OpenMPDEV, 258
N VEnableScaleVectorArray Parallel, 212
N VEnableScaleVectorArray ParHyp, 227
N VEnableScaleVectorArray Petsc, 230
N VEnableScaleVectorArray Pthreads, 223
N VEnableScaleVectorArray Raja, 248
N VEnableScaleVectorArray Serial, 206
N VEnableScaleVectorArray Sycl, 252
N VEnableWrmsNormMaskVectorArray Cuda, 236
N VEnableWrmsNormMaskVectorArray Hip, 242
N VEnableWrmsNormMaskVectorArray ManyVector,

264
N VEnableWrmsNormMaskVectorArray MPIManyVector,

270
N VEnableWrmsNormMaskVectorArray OpenMP, 218
N VEnableWrmsNormMaskVectorArray OpenMPDEV,

259
N VEnableWrmsNormMaskVectorArray Parallel, 213
N VEnableWrmsNormMaskVectorArray ParHyp, 227
N VEnableWrmsNormMaskVectorArray Petsc, 231

N VEnableWrmsNormMaskVectorArray Pthreads, 223
N VEnableWrmsNormMaskVectorArray Serial, 207
N VEnableWrmsNormVectorArray Cuda, 236
N VEnableWrmsNormVectorArray Hip, 242
N VEnableWrmsNormVectorArray ManyVector, 264
N VEnableWrmsNormVectorArray MPIManyVector,

269
N VEnableWrmsNormVectorArray OpenMP, 218
N VEnableWrmsNormVectorArray OpenMPDEV, 258
N VEnableWrmsNormVectorArray Parallel, 212
N VEnableWrmsNormVectorArray ParHyp, 227
N VEnableWrmsNormVectorArray Petsc, 231
N VEnableWrmsNormVectorArray Pthreads, 223
N VEnableWrmsNormVectorArray Serial, 207
N VGetArrayPointer MPIPlusX, 271
N VGetDeviceArrayPointer Cuda, 232
N VGetDeviceArrayPointer Hip, 239
N VGetDeviceArrayPointer OpenMPDEV, 257
N VGetDeviceArrayPointer Raja, 245
N VGetDeviceArrayPointer Sycl, 250
N VGetHostArrayPointer Cuda, 232
N VGetHostArrayPointer Hip, 239
N VGetHostArrayPointer OpenMPDEV, 257
N VGetHostArrayPointer Raja, 245
N VGetHostArrayPointer Sycl, 250
N VGetLocalLength Parallel, 211
N VGetLocalVector MPIPlusX, 271
N VGetNumSubvectors ManyVector, 263
N VGetNumSubvectors MPIManyVector, 268
N VGetSubvector ManyVector, 262
N VGetSubvector MPIManyVector, 267
N VGetSubvectorArrayPointer ManyVector, 262
N VGetSubvectorArrayPointer MPIManyVector, 267
N VGetVector ParHyp, 225
N VGetVector Petsc, 229
N VGetVector Trilinos, 260
N VIsManagedMemory Cuda, 233
N VIsManagedMemory Hip, 239
N VIsManagedMemory Raja, 246
N VIsManagedMemory Sycl, 251
N VMake Cuda, 233
N VMake Hip, 240
N VMake MPIManyVector, 267
N VMake MPIPlusX, 271
N VMake OpenMP, 215
N VMake OpenMPDEV, 256
N VMake Parallel, 210
N VMake ParHyp, 225
N VMake Petsc, 229
N VMake Pthreads, 221
N VMake Raja, 246
N VMake Serial, 204
N VMake Sycl, 250
N VMake Trilinos, 260
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N VMakeManaged Cuda, 234
N VMakeManaged Hip, 240
N VMakeManaged Raja, 247
N VMakeManaged Sycl, 250
N VMakeWithManagedAllocator Cuda, 234
N VNew Cuda, 233
N VNew Hip, 240
N VNew ManyVector, 262
N VNew MPIManyVector, 266, 267
N VNew OpenMP, 215
N VNew OpenMPDEV, 256
N VNew Parallel, 210
N VNew Pthreads, 220
N VNew Raja, 246
N VNew SensWrapper, 409
N VNew Serial, 204
N VNew Sycl, 249
N VNewEmpty, 196
N VNewEmpty Cuda, 233
N VNewEmpty Hip, 240
N VNewEmpty OpenMP, 215
N VNewEmpty OpenMPDEV, 256
N VNewEmpty Parallel, 210
N VNewEmpty ParHyp, 225
N VNewEmpty Petsc, 229
N VNewEmpty Pthreads, 221
N VNewEmpty Raja, 246
N VNewEmpty SensWrapper, 408
N VNewEmpty Serial, 204
N VNewEmpty Sycl, 250
N VNewManaged Cuda, 233
N VNewManaged Hip, 240
N VNewManaged Raja, 246
N VNewManaged Sycl, 250
N VNewWithMemHelp Cuda, 233
N VNewWithMemHelp Raja, 246
N VNewWithMemHelp Sycl, 250
N VPrint Cuda, 235
N VPrint Hip, 241
N VPrint OpenMP, 216
N VPrint OpenMPDEV, 257
N VPrint Parallel, 211
N VPrint ParHyp, 226
N VPrint Petsc, 229
N VPrint Pthreads, 221
N VPrint Raja, 247
N VPrint Serial, 205
N VPrint Sycl, 251
N VPrintFile Cuda, 235
N VPrintFile Hip, 241
N VPrintFile OpenMP, 216
N VPrintFile OpenMPDEV, 257
N VPrintFile Parallel, 211
N VPrintFile ParHyp, 226

N VPrintFile Petsc, 229
N VPrintFile Pthreads, 222
N VPrintFile Raja, 247
N VPrintFile Serial, 205
N VPrintFile Sycl, 252
N VSetArrayPointer MPIPlusX, 271
N VSetCudaStream Cuda, 234
N VSetDeviceArrayPointer Cuda, 232
N VSetDeviceArrayPointer Raja, 245
N VSetDeviceArrayPointer Sycl, 251
N VSetHostArrayPointer Cuda, 232
N VSetHostArrayPointer Raja, 245
N VSetHostArrayPointer Sycl, 251
N VSetKernelExecPolicy Cuda, 234
N VSetKernelExecPolicy Hip, 240
N VSetKernelExecPolicy Sycl, 251
N VSetSubvectorArrayPointer ManyVector, 262
N VSetSubvectorArrayPointer MPIManyVector, 268
NV COMM P, 209
NV CONTENT OMP, 214
NV CONTENT OMPDEV, 255
NV CONTENT P, 209
NV CONTENT PT, 220
NV CONTENT S, 203
NV DATA DEV OMPDEV, 255
NV DATA HOST OMPDEV, 255
NV DATA OMP, 214
NV DATA P, 209
NV DATA PT, 220
NV DATA S, 204
NV GLOBLENGTH P, 209
NV Ith OMP, 215
NV Ith P, 209
NV Ith PT, 220
NV Ith S, 204
NV LENGTH OMP, 214
NV LENGTH OMPDEV, 255
NV LENGTH PT, 220
NV LENGTH S, 204
NV LOCLENGTH P, 209
NV NUM THREADS OMP, 214
NV NUM THREADS PT, 220
NV OWN DATA OMP, 214
NV OWN DATA OMPDEV, 255
NV OWN DATA P, 209
NV OWN DATA PT, 220
NV OWN DATA S, 204
NVECTOR module, 181
nvector openmp mod, 219
nvector pthreads mod, 224

optional input
backward solver, 145
forward sensitivity, 113–115
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generic linear solver interface, 59–64, 146–151
initial condition calculation, 64–66
iterative linear solver, 62–64, 149–151
matrix-based linear solver, 59–60, 146–147
matrix-free linear solver, 60–62, 147–149
quadrature integration, 93–94, 155
rootfinding, 66–67
sensitivity-dependent quadrature integration,

125–127
solver, 52–59

optional output
backward initial condition calculation, 153
backward solver, 151–152
band-block-diagonal preconditioner, 101–102
forward sensitivity, 115–118
generic linear solver interface, 77–81
initial condition calculation, 76, 118
interpolated quadratures, 93
interpolated sensitivities, 112
interpolated sensitivity-dep. quadratures, 123
interpolated solution, 67
quadrature integration, 95–96, 155
sensitivity-dependent quadrature integration,

127–128
solver, 70–75
version, 68

output mode, 136, 144

partial error control
explanation of idas behavior, 129

portability, 38
preconditioning

advice on, 23–24, 36
band-block diagonal, 97
setup and solve phases, 36
user-supplied, 62–63, 88, 89, 149–150, 165,

166

quadrature integration, 25
forward sensitivity analysis, 28

RCONST, 38
realtype, 38
reinitialization, 81, 139
residual function, 82

backward problem, 156
forward sensitivity, 119
quadrature backward problem, 157
sensitivity-dep. quadrature backward prob-

lem, 158
right-hand side function

quadrature equations, 96
sensitivity-dependent quadrature equations,

128
Rootfinding, 24, 42, 50

second-order sensitivity analysis, 31
support in idas, 32

SetLinearSolutionScalingB, 147
SM COLS B, 290
SM COLS D, 285
SM COLUMN B, 86, 290
SM COLUMN D, 85, 285
SM COLUMN ELEMENT B, 86, 290
SM COLUMNS B, 290
SM COLUMNS D, 285
SM COLUMNS S, 297
SM CONTENT B, 288
SM CONTENT D, 284
SM CONTENT S, 295
SM DATA B, 290
SM DATA D, 285
SM DATA S, 297
SM ELEMENT B, 86, 290
SM ELEMENT D, 85, 285
SM INDEXPTRS S, 297
SM INDEXVALS S, 297
SM LBAND B, 290
SM LDATA B, 290
SM LDATA D, 285
SM LDIM B, 290
SM NNZ S, 86, 297
SM NP S, 297
SM ROWS B, 290
SM ROWS D, 285
SM ROWS S, 297
SM SPARSETYPE S, 297
SM SUBAND B, 290
SM UBAND B, 290
SMALL REAL, 38
step size bounds, 55
SUNBandMatrix, 41, 291
SUNBandMatrix Cols, 292
SUNBandMatrix Column, 293
SUNBandMatrix Columns, 292
SUNBandMatrix Data, 292
SUNBandMatrix LDim, 292
SUNBandMatrix LowerBandwidth, 292
SUNBandMatrix Print, 291
SUNBandMatrix Rows, 291
SUNBandMatrix StoredUpperBandwidth, 292
SUNBandMatrix UpperBandwidth, 292
SUNBandMatrixStorage, 291
SUNDenseMatrix, 41, 285
SUNDenseMatrix Cols, 286
SUNDenseMatrix Column, 286
SUNDenseMatrix Columns, 286
SUNDenseMatrix Data, 286
SUNDenseMatrix LData, 286
SUNDenseMatrix Print, 286
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SUNDenseMatrix Rows, 286
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