
MANUAL for

the jlcode Package Version 6.1

May 03, 2022

(Version 1.0: January 25, 2018)

https://github.com/wg030/jlcode

Copyright 2018�2022 Willi Gerbig

Contents

1 Introduction 2

2 License 2

3 Package Options 3
3.1 Current Package Options . 3
3.2 Obsolete Package Options . 4

4 How to Insert Code in Your Document 5
4.1 Inserting Code with autoload=true . 5
4.2 Inserting Code with autoload=false . 6

5 How to Create Labels and Captions for Your Code Blocks 7

6 How to Increase the Font Size 8

7 Themes 9
7.1 Example with theme=default . 10
7.2 Example with theme=grayscale . 11
7.3 Example with theme=default-plain . 12
7.4 Example with theme=grayscale-plain . 13
7.5 Example with theme=darkbeamer . 14

8 Known Manageable Issues 15

https://github.com/wg030/jlcode

1 Introduction

The jlcode package (jlcode.sty) provides a language de�nition for the programming lan-
guage Julia for the listings package as well as �ve di�erent style de�nitions. Loading this
package is the easiest way to display Julia code within your document when you want to
make use of the listings interface.
This package takes especially care of correctly displaying code that contains the most

common unicode characters such as greek letters, superscripts or mathematical symbols,
which Julia allows as valid characters for identi�er names. Moreover all keywords, literals,
built-ins, macros, functions and string types that belong to Julia's standard library were
generated by a script (createkwlists.jl) and then included in the language de�nition of
this package.
Since version 6.0 you cannot only compile your document with pdftex to get the desired

results, but you can compile your document with luatex or xetex, too. There is no need
to do something special when compiling with luatex or xetex either. The only thing you
must make sure is that you do not forget to download the JuliaMono font �les, which
were created by the GitHub User cormullion.
Alongside the actual language de�nition a few nice looking styles were de�ned, too,

which will help you to highlight your Julia code with colors and/or a surrounding box.
There are currently �ve di�erent themes: Two themes which are very similiar to the
style of the o�cial Julia online documentation, two black and white themes and one
dark theme.

2 License

manual.pdf

Copyright 2018 Willi Gerbig

This work may be distributed and/or modi�ed under the conditions of the LATEX Project
Public License, either version 1.3 of this license or (at your option) any later version.
The latest version of this license is in http://www.latex-project.org/lppl.txt and version
1.3 or later is part of all distributions of LATEX version 2005/12/01 or later.

This work has the LPPL maintenance status 'maintained'.

The Current Maintainer of this work is Willi Gerbig.

This work consists of the �les
jlcode.sty, createkwlists.jl, createucclist.jl, test�le.jl, test�le2.jl, and manual.pdf.

2

http://www.latex-project.org/lppl.txt

3 Package Options

3.1 Current Package Options

autoload=<true | false> (default: true)
Load the jlcode style automatically when including the package.
This option is recommended if you just want to display Julia code with the listings
package in your document. However if you also want to display code from other
programming languages, you should set this option to false because you are likely
to experience ugly interferences otherwise.

charsperline=<positive integer> (default: 80)
Control the width of the code box.
Use this option in order to speci�y the exact number of characters per line that
can �t into the code box.

defaultmonofont=<true | false> (default: true)
Use Courier as the typewriter font in your document when compiling with pdftex
respectively JuliaMono when compiling with luatex or xetex.
This option is recommended unless you want to have a di�erent font for your code
examples. Note that only the typewriter family is a�ected here and you must load
any font package before the jlcode package since otherwise there will be no e�ect
with this option.
Moreover if you set this option to false, make sure your font supports bold typwriter
font, like Courier and JuliaMono do, because otherwise the keywords will not be
displayed in bold, of course.

linenumbers=<true | false> (default: false)
Add line numbers to the code box.
Use this option if you want to number the lines of your code.

theme=<string> (default: default)
Choose a theme that de�nes the colors for the elements of your code as well as the
appearance of a code box if desired.
Currently there exist the following �ve themes:
default, default-plain, grayscale, grayscale-plain and darkbeamer.

3

3.2 Obsolete Package Options

courierasttd�t=<true | false> (default: true)
This option is obsolete and will throw an error since version 5.0.
Since version 6.0 the new name of this option is defaultmonofont.

nobox=<true | false> (default: false)
This option is obsolete and will throw an error since version 5.0.
Use the theme option instead.

nocolors=<true | false> (default: false)
This option is obsolete and will throw an error since version 5.0.
Use the theme option instead.

usebox=<true | false> (default: true)
This option is obsolete and will throw an error since version 5.0.
Use the theme option instead.

usecolors=<true | false> (default: true)
This option is obsolete and will throw an error since version 5.0.
Use the theme option instead.

usecourier=<true | false> (default: true)
This option is obsolete and will throw an error since version 6.0.
The option has been renamed to defaultmonofont.

4

4 How to Insert Code in Your Document

4.1 Inserting Code with autoload=true

Command for Loading the Package:

\usepackage [auto load=true] { j l c o d e }

In-line Code Snippets:

\ j l i n l {@time s o r t (myarr) # no mod i f i c a t i on }

Note:

You must decode the following four characters
{ } % \ as \{ \} \% \\
if you want to display them with the \ jlinl command.

Diplay Code:

\ begin { j l l i s t i n g }
some j u l i a code
p r i n t l n ("Here we go with Ju l i a ! ")
\end{ j l l i s t i n g }

Listings for Standalone Files:

\ j l i n p u t l i s t i n g { f i l ename . j l }

5

4.2 Inserting Code with autoload=false

Command for Loading the Package:

\usepackage [auto load=f a l s e] { j l c o d e }

In-line Code Snippets:

\ j l i n l {@time s o r t (myarr) # no mod i f i c a t i on }

Note:

You must decode the following four characters
{ } % \ as \{ \} \% \\
if you want to display them with the \ jlinl command.

Diplay Code:

\ begin { j l l i s t i n g } [language=j u l i a , s t y l e=j l c o d e s t y l e]
some j u l i a code
p r i n t l n ("Here we go with Ju l i a ! ")
\end{ j l l i s t i n g }

Listings for Standalone Files:

\ j l i n p u t l i s t i n g { f i l ename . j l }

6

5 How to Create Labels and Captions for Your Code Blocks

In order to create captions and/or labels for your code blocks you can make use of the
possibilities that the interface of the listing package o�ers you as follows:

Creating Labels and Captions for Diplay Code Listings:

\ begin { j l l i s t i n g } [capt ion={My Code} , l a b e l=mylabel]
some j u l i a code
p r i n t l n ("Here we go with Ju l i a ! ")
\end{ j l l i s t i n g }

Creating Labels and Captions for Listings of Standalone Files:

\ j l i n p u t l i s t i n g [capt ion={My Code} , l a b e l=mylabel] { f i l ename . j l }

7

6 How to Increase the Font Size

The jlcode package was desgined in such a way that the size of the displayed code adjusts
automatically to the font size of the current active font. As a consequence of that you
can simply increase (or decrease) the font size of your code as follows:

Changing the Font Size of In-line Code Snippets:

{\LARGE Quick e f f i c i e n c y check : \ j l i n l {@time s o r t (myarr)}}

Changing the Font Size of Diplay Code:

{\LARGE
\begin { j l l i s t i n g }
some j u l i a code
p r i n t l n ("Here we go with Ju l i a ! ")
\end{ j l l i s t i n g }
}

Changing the Font Size of Listings for Standalone Files:

{\LARGE \ j l i n p u t l i s t i n g { f i l ename . j l }}

8

7 Themes

With jlcode version 5.0 themes were introduced into the package. A theme consists of a
combination of colors for the elements of the code as well as a style for the appearance
of the code box. The following �ve themes exist at the moment:

default:

\usepackage [theme=de f au l t] { j l c o d e }

This theme is the default theme. It uses the colors as well as the code box of the julia
online documentation.

grayscale:

\usepackage [theme=gray s ca l e] { j l c o d e }

This theme only uses black as color for the code elements and draws the same box as in
the julia online documentation.

default-plain:

\usepackage [theme=de fau l t−p l a i n] { j l c o d e }

This theme uses the colors of the julia online documentation, but does not draw a box.

grayscale-plain:

\usepackage [theme=graysca l e−p l a i n] { j l c o d e }

This theme only uses black as color for the code elements and does not draw a box.

darkbeamer:

\usepackage [theme=darkbeamer] { j l c o d e }

This theme is a dark theme which was designed by the GitHub user dietercastel. It was
desgined in such a way that it is ideally suited for the dark-beamer-theme.

9

7.1 Example with theme=default

� �
#= A comment that consists of several lines.
The following code itself is rather useless unless you want
to test how Julia code is displayed by the jlcode package. =#

This line will be my reference line, which will contain exactly 80 characters.

This line is a comment containing operators like &, -, $ and %
A comment with the German word "Übergrößengeschäft" (store for oversizes)
This line contains some special unicode characters: e, α, γ, w2, ∆x, Ϋ, x̃, e
A comment with some numbers: 424, 1.23, 0.2E-5, -9.9e+9, 1_001
Mathematical characters that are Julia functions:
|, |>, ~, ×, ÷, ∈, /∈, 3, 63, ◦,

√
, 3

√
, ∩, ∪,

≈, 6≈, 6=, ≡, 6≡, ≤, ≥, ⊆, ⊇, 6⊆, 6⊇, (,), Y, ·
Other mathematical symbols: ∇, ⊗, ⊕, ‖, ... , ··· ,

...,
. . . , . .

.

defining a useless testfunction
function Style_4th_Test(x, y)

myver = v"2.00"
mystr = "String: \"Übergrößengeschäft\", α, π, ∪, ϕ̇ and the + operator."
myset = Set([2, 9, 1_200, 2_500, 33])
x_in_myset = x ∈ myset
myset(2) = myset ∪ Set([4, 8_000, 12, 33])
z1vec = rand(Int8, 3)
z2vec = Array{Int8}(undef, 3)
z2vec[1:2] = [x % y, y \ x]
reverse!(z1vec)
t = x % 2 == 0 ? x : x + 1
t̄ = ~(t & x | y) Y y
myτ̂var = t̄ & t $ t
α = @time

√
0.3

βα = 3.2e+5ˆα
myβvar = 3

√
0.12E-2 * βα

z2vec[3] = yˆ2 + 3.4x*y - (α + myβvar) * t/2
z2vec = (z2vec + z1vec).ˆ2
if !(0.1 ≤ norm(z1vec') < norm(z2vec') + e + e ÷ pi + γ + φ)

mystr = String(mystr, " signed ")
println(mystr)
return true;

elseif 3.2 ≥ norm(z2vec - z1vec) > 2.69
if norm(z2vec - z1vec) 6= 3.0

println(String("Error in ", myver, "!"))
end
return false;

end

end� �

10

7.2 Example with theme=grayscale

� �
#= A comment that consists of several lines.
The following code itself is rather useless unless you want
to test how Julia code is displayed by the jlcode package. =#

This line will be my reference line, which will contain exactly 80 characters.

This line is a comment containing operators like &, -, $ and %
A comment with the German word "Übergrößengeschäft" (store for oversizes)
This line contains some special unicode characters: e, α, γ, w2, ∆x, Ϋ, x̃, e
A comment with some numbers: 424, 1.23, 0.2E-5, -9.9e+9, 1_001
Mathematical characters that are Julia functions:
|, |>, ~, ×, ÷, ∈, /∈, 3, 63, ◦,

√
, 3

√
, ∩, ∪,

≈, 6≈, 6=, ≡, 6≡, ≤, ≥, ⊆, ⊇, 6⊆, 6⊇, (,), Y, ·
Other mathematical symbols: ∇, ⊗, ⊕, ‖, ... , ··· ,

...,
. . . , . .

.

defining a useless testfunction
function Style_4th_Test(x, y)

myver = v"2.00"
mystr = "String: \"Übergrößengeschäft\", α, π, ∪, ϕ̇ and the + operator."
myset = Set([2, 9, 1_200, 2_500, 33])
x_in_myset = x ∈ myset
myset(2) = myset ∪ Set([4, 8_000, 12, 33])
z1vec = rand(Int8, 3)
z2vec = Array{Int8}(undef, 3)
z2vec[1:2] = [x % y, y \ x]
reverse!(z1vec)
t = x % 2 == 0 ? x : x + 1
t̄ = ~(t & x | y) Y y
myτ̂var = t̄ & t $ t
α = @time

√
0.3

βα = 3.2e+5ˆα
myβvar = 3

√
0.12E-2 * βα

z2vec[3] = yˆ2 + 3.4x*y - (α + myβvar) * t/2
z2vec = (z2vec + z1vec).ˆ2
if !(0.1 ≤ norm(z1vec') < norm(z2vec') + e + e ÷ pi + γ + φ)

mystr = String(mystr, " signed ")
println(mystr)
return true;

elseif 3.2 ≥ norm(z2vec - z1vec) > 2.69
if norm(z2vec - z1vec) 6= 3.0

println(String("Error in ", myver, "!"))
end
return false;

end

end� �

11

7.3 Example with theme=default-plain

#= A comment that consists of several lines.
The following code itself is rather useless unless you want
to test how Julia code is displayed by the jlcode package. =#

This line will be my reference line, which will contain exactly 80 characters.

This line is a comment containing operators like &, -, $ and %
A comment with the German word "Übergrößengeschäft" (store for oversizes)
This line contains some special unicode characters: e, α, γ, w2, ∆x, Ϋ, x̃, e
A comment with some numbers: 424, 1.23, 0.2E-5, -9.9e+9, 1_001
Mathematical characters that are Julia functions:
|, |>, ~, ×, ÷, ∈, /∈, 3, 63, ◦,

√
, 3

√
, ∩, ∪,

≈, 6≈, 6=, ≡, 6≡, ≤, ≥, ⊆, ⊇, 6⊆, 6⊇, (,), Y, ·
Other mathematical symbols: ∇, ⊗, ⊕, ‖, ... , ··· ,

...,
. . . , . .

.

defining a useless testfunction
function Style_4th_Test(x, y)

myver = v"2.00"
mystr = "String: \"Übergrößengeschäft\", α, π, ∪, ϕ̇ and the + operator."
myset = Set([2, 9, 1_200, 2_500, 33])
x_in_myset = x ∈ myset
myset(2) = myset ∪ Set([4, 8_000, 12, 33])
z1vec = rand(Int8, 3)
z2vec = Array{Int8}(undef, 3)
z2vec[1:2] = [x % y, y \ x]
reverse!(z1vec)
t = x % 2 == 0 ? x : x + 1
t̄ = ~(t & x | y) Y y
myτ̂var = t̄ & t $ t
α = @time

√
0.3

βα = 3.2e+5ˆα
myβvar = 3

√
0.12E-2 * βα

z2vec[3] = yˆ2 + 3.4x*y - (α + myβvar) * t/2
z2vec = (z2vec + z1vec).ˆ2
if !(0.1 ≤ norm(z1vec') < norm(z2vec') + e + e ÷ pi + γ + φ)

mystr = String(mystr, " signed ")
println(mystr)
return true;

elseif 3.2 ≥ norm(z2vec - z1vec) > 2.69
if norm(z2vec - z1vec) 6= 3.0

println(String("Error in ", myver, "!"))
end
return false;

end

end

12

7.4 Example with theme=grayscale-plain

#= A comment that consists of several lines.
The following code itself is rather useless unless you want
to test how Julia code is displayed by the jlcode package. =#

This line will be my reference line, which will contain exactly 80 characters.

This line is a comment containing operators like &, -, $ and %
A comment with the German word "Übergrößengeschäft" (store for oversizes)
This line contains some special unicode characters: e, α, γ, w2, ∆x, Ϋ, x̃, e
A comment with some numbers: 424, 1.23, 0.2E-5, -9.9e+9, 1_001
Mathematical characters that are Julia functions:
|, |>, ~, ×, ÷, ∈, /∈, 3, 63, ◦,

√
, 3

√
, ∩, ∪,

≈, 6≈, 6=, ≡, 6≡, ≤, ≥, ⊆, ⊇, 6⊆, 6⊇, (,), Y, ·
Other mathematical symbols: ∇, ⊗, ⊕, ‖, ... , ··· ,

...,
. . . , . .

.

defining a useless testfunction
function Style_4th_Test(x, y)

myver = v"2.00"
mystr = "String: \"Übergrößengeschäft\", α, π, ∪, ϕ̇ and the + operator."
myset = Set([2, 9, 1_200, 2_500, 33])
x_in_myset = x ∈ myset
myset(2) = myset ∪ Set([4, 8_000, 12, 33])
z1vec = rand(Int8, 3)
z2vec = Array{Int8}(undef, 3)
z2vec[1:2] = [x % y, y \ x]
reverse!(z1vec)
t = x % 2 == 0 ? x : x + 1
t̄ = ~(t & x | y) Y y
myτ̂var = t̄ & t $ t
α = @time

√
0.3

βα = 3.2e+5ˆα
myβvar = 3

√
0.12E-2 * βα

z2vec[3] = yˆ2 + 3.4x*y - (α + myβvar) * t/2
z2vec = (z2vec + z1vec).ˆ2
if !(0.1 ≤ norm(z1vec') < norm(z2vec') + e + e ÷ pi + γ + φ)

mystr = String(mystr, " signed ")
println(mystr)
return true;

elseif 3.2 ≥ norm(z2vec - z1vec) > 2.69
if norm(z2vec - z1vec) 6= 3.0

println(String("Error in ", myver, "!"))
end
return false;

end

end

13

7.5 Example with theme=darkbeamer

#= A comment that consists of several lines.
The following code itself is rather useless unless you want
to test how Julia code is displayed by the jlcode package. =#

This line will be my reference line, which will contain exactly 80 characters.

This line is a comment containing operators like &, -, $ and %
A comment with the German word "Übergrößengeschäft" (store for oversizes)
This line contains some special unicode characters: e, α, γ, w2, ∆x, Ϋ, x̃, e
A comment with some numbers: 424, 1.23, 0.2E-5, -9.9e+9, 1_001
Mathematical characters that are Julia functions:
|, |>, ~, ×, ÷, ∈, /∈, 3, 63, ◦,

√
, 3

√
, ∩, ∪,

≈, 6≈, 6=, ≡, 6≡, ≤, ≥, ⊆, ⊇, 6⊆, 6⊇, (,), Y, ·
Other mathematical symbols: ∇, ⊗, ⊕, ‖, ... , ··· ,

...,
. . . , . .

.

defining a useless testfunction
function Style_4th_Test(x, y)

myver = v"2.00"
mystr = "String: \"Übergrößengeschäft\", α, π, ∪, ϕ̇ and the + operator."
myset = Set([2, 9, 1_200, 2_500, 33])
x_in_myset = x ∈ myset
myset(2) = myset ∪ Set([4, 8_000, 12, 33])
z1vec = rand(Int8, 3)
z2vec = Array{Int8}(undef, 3)
z2vec[1:2] = [x % y, y \ x]
reverse!(z1vec)
t = x % 2 == 0 ? x : x + 1
t̄ = ~(t & x | y) Y y
myτ̂var = t̄ & t $ t
α = @time

√
0.3

βα = 3.2e+5ˆα
myβvar = 3

√
0.12E-2 * βα

z2vec[3] = yˆ2 + 3.4x*y - (α + myβvar) * t/2
z2vec = (z2vec + z1vec).ˆ2
if !(0.1 ≤ norm(z1vec') < norm(z2vec') + e + e ÷ pi + γ + φ)

mystr = String(mystr, " signed ")
println(mystr)
return true;

elseif 3.2 ≥ norm(z2vec - z1vec) > 2.69
if norm(z2vec - z1vec) 6= 3.0

println(String("Error in ", myver, "!"))
end
return false;

end

end

14

8 Known Manageable Issues

The following Julia code presents the known issues that can appear due to the na-
ture of the listings package. Right now the jlcode package is not able to handle theses
cases automatically. However the issues can be �xed manually by the user himself using
the commands \addlitjlstrnum, \ addlitjlbase , \addlitjlmacros and \ addlitjlfunctions .
These commands should be added to the preample of your latex document right after
the jlcode package is loaded. Here are a few typical examples of issues that can be �xed
manually:

Output Without Fixing the Issues:

� �
KNOWN MANAGEABLE ISSUES:

numbers in E-notation without using a + sign:
evar = 3.99e400
evar2 = 3.99E400

single characters
mychar = 'W'
mychar(2) = 'e'
mychar(3) = 'κ'

calling self defined macros
@spellcheck("fukc")

self defined functions ending with '!'
function changesig!(A)

A .= -A
end

KNOWN MANAGEABLE ISSUES (pdftex ENGINE ONLY):

identifier name with a number that follows
directly behind a special unicode character:
myβ2ndvar = 2 * 0.12E-2 * xy

identifier name, which contains a γ, π or φ:
myφvar+ = sqrt(2)
approx4π = 3.142� �

15

Commands for Fixing the Issues:

\ add l i t j l s t r num {e400 }{ e400 }{4}
\ add l i t j l s t r num {E400}{E400}{4}
\ add l i t j l s t r num { 'W'}{\ t e x t quo t e s i n g l e W\ t ex t quo t e s i n g l e }{3}
\ add l i t j l s t r num { 'e '}{\ t e x t quo t e s i n g l e \ euro \ t e x t quo t e s i n g l e }{3}
\ add l i t j l s t r num { 'κ '}{\ t e x t quo t e s i n g l e \varkappa\ t e x t quo t e s i n g l e }{3}
\ a d d l i t j l b a s e {myβ2ndvar }{myβ2ndvar }{9}
\ a d d l i t j l b a s e {myφvar+}{myϕvar$ {\ s c r i p t s t y l e {}_{+}}$}{7}
\ a d d l i t j l b a s e {approx4π}{ approx4$\ pi$ }{8}
\ add l i t j lma c r o s {@spe l l check }{@spe l l check }{11}
\ a d d l i t j l f u n c t i o n s { changes ig ! }{ changes ig !}{10}

Output After Fixing the Issues:

� �
KNOWN MANAGEABLE ISSUES:

numbers in E-notation without using a + sign:
evar = 3.99e400
evar2 = 3.99E400

single characters
mychar = 'W'
mychar(2) = 'e'
mychar(3) = 'κ'

calling self defined macros
@spellcheck("fukc")

self defined functions ending with '!'
function changesig!(A)

A .= -A
end

KNOWN MANAGEABLE ISSUES (pdftex ENGINE ONLY):

identifier name with a number that follows
directly behind a special unicode character:
myβ2ndvar = 2 * 0.12E-2 * xy

identifier name, which contains a γ, π or φ:
myφvar+ = sqrt(2)
approx4π = 3.142� �

16

	Introduction
	License
	Package Options
	Current Package Options
	Obsolete Package Options

	How to Insert Code in Your Document
	Inserting Code with autoload=true
	Inserting Code with autoload=false

	How to Create Labels and Captions for Your Code Blocks
	How to Increase the Font Size
	Themes
	Example with theme=default
	Example with theme=grayscale
	Example with theme=default-plain
	Example with theme=grayscale-plain
	Example with theme=darkbeamer

	Known Manageable Issues

